
lo

-Model-Based
Troubleshooting

of Digital
Systems

OTIC -

b~ee, OC4, 'SU

Walter Charles Hamsche

MIT Artificial Intelligence Laboratory

IM-norR LON STATEMENT A1
f ~pprovod foZ pubicT rel eg f
:. D8,8triu j

1 00

812 1 008

UNCLASSIFIED
SECURIT. CLA5S61AtIO4 or TWI WAGE roo Dou@ Ele~tidr) __________________

REPORT DOCIUMENTATION PAGE BEFORE COPEIGFORM

1.~~S REPRTNUBE ACCESSION NO. 3. REtCIpIENt'S CATALOG NUMIIER

4. TTLE ond W61110)S. TYPE Of REPORT A PERIOD COVERED

Mo del-Based Troubleshooting of Digital Systems techincal report

S. PERFORMING OnG. REPORT NUMISER

7. AUTNOR~sJ S. CONTRACT OR GRANT NUM191RIB)

Walter Charles Hamscher N00014-85-K-0124

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PRGRM ELEMENT. PROJECT. TASKc
AREA a WORK UNIT NuhBESta

Artificial Intelligence Laboratory
545 Technology Square
CabiMA 21_

IS- CONTROLLING OFFICE NAME AND ADDRESS I&. REPORT DATE

Advanced Research Projects Agency August 1988

1400 Wilson Blvd. IS. NUM8ER OF PAGES

Arlington, VA 22209 316
14. MONITORING AGENCY NAME & ADDRSS(uI ifferent front Controlling 010160) 1S. SECURITY CLASS. (of this top*"t)

Office of Naval Research UNCLASSIFIED
Information Systems________________

Arlington, VA 22217 168. kECLASIICATION/DOW GAOING

1S. DISTRIBUTION STATEMENT (of Ohio ARe)e

Distribution is unlimited

17. DISTRIBf UTION IT ATEMENT (of We ahefr..U ontored to BlckSii0. D Aflletif hM DReer

Unlimited

I.SUPPLEMEN0TARY NOTES

None

III. KEY WDRD"-Confint .e .e* old* U aooesewin~'d ieIdotI b look notbot)

a rtificial intelligence , diagnosis from first principles,
automated diagnosis , temporal reasoning ~~
hardware troubleshooting,

modl-bsedreasoning,

10. A7STh AC T (Co.,timw - O to vft*e Old* it 1100080" And ~WIOO bp hieak V~IN0

-\his thesis describes a methodology, a representation,- and an implementated

program for troubleshooting digital circuit boards at roughly the level of

expertise one might expect in a human novice. Existing methods for model-

based troubleshooting have not scaled up to deal with complex circuits, in

part because traditional circuit models do not explicitly represent aspects

of the device that troubleshooters would consider important. For complex

devices the model of the target device should be constructed with the goal

of troubleshooting explicitly in mind. Given that methodology, the (cont.)

DD I 0,"T 1473 EDITIONO0F NOV 6SISOBSOLTEr UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Who"m Date knitwo

Block 20 cont.

the principal contributions of the thesis are ways of representing complex
circuits to help make troubleshooting feasible. Temporally coarse behavior
descriptions are a particularly powerful simplication. Instantiating this idea
for the circuit domain produces a vocabulary for describing digital signals.
The vocabulary has a level of temporal detail sufficient to make useful
predictions about the response of the circuit while it remains coarse enough
to make those predictions computationally tractable. Other contributions are
principles for using these representations. Although not embodied in a program,
these principles are sufficiently concrete that models can be constructed
manually from existing circuit descriptions such as schematics, part specifications,
and state diagrams. One such principle is that if there are components with
particularly likely failure modes or failure modes in which their behavior is
drastically simplified, this knowledge should be incorporated into the model.
Further contributions include the solution of technical problems resulting from
the use of explicit temporal representations and design descriptions with
tangled hierarchies.

ACCeSSIon For

NTIS GRA&I
DTIC TAB
Unannounced f]

Justification

By
Distribution/

Availability Codes
l Aval and/or

Dist Special

API

Model-Based Troubleshooting
of Digital Systems

by

Walter Charles Hamscher

Revised version of a thesis submitted to
the Department of Electrical Engineering and Computer Science
on 12 August 1988 in partial fulfillment of the requirements foz

the degree of Doctor of Philosophy in Computer Science

Abstract

This thesis describes a methodology, a representation, and an imple-
mented program for troubleshooting digital circuit boards at roughly the
level of expertise one might expect in a human novice. Existing methods
for model-based troubleshooting have not scaled up to deal with complex
circuits, in part because traditional circuit models do not explicitly repre-
sent aspects of the device that troubleshooters would consider important.
For complex devices the model of the target device should be constructed
with the goal of troubleshooting explicitly in mind. Given that methodology,
the principal contributions of the thesis are ways of representing complex
circuits to help make troubleshooting feasible. Temporally coarse behavior
descriptions are a particularly powerful simplification. Instantiating this idea
for the circuit domain produces a vocabulary for describing digital signals.
The vocabulary has a level of temporal detail sufficient to make useful pre-
dictions about the response of the circuit while it remains coarse enough
to make those predictions computationally tractable. Other contributions
are principles for using these representations. Although not embodied in a
program, these principles are sufficiently concrete that models can be con-
structed manually from existing circuit descriptions such as schematics, part
specifications, and state diagrams. One such principle is that if there are
components with particularly likely failure modes or failure modes in which
their behavior is drastically simplified, this knowledge should be incorporated
into the model. Further contributions include the solution of technical prob-
lems resulting from the use of explicit temporal representations and design
descriptions with tangled hierarchies.

Acknowledgements

Success is humbling: I am permanently indebted to the many fine people
who have done so much for me during my years at MIT.

Randall Davis, my advisor, spent countless hours providing intellectual
guidance, unflagging moral and financial support, and of course the all-
important comedic perspective.

My readers Ramesh Patil, Howard Shrobe, and Peter Szolovits, spent
a great deal of time with me and with this document, providing their own
indispensably unique viewpoints.

All the usual suspects at the weekly Hardware Troubleshooting group
meetings, including my friends Meyer Billmers, Choon Goh, Hal Haig, Paul
Resnick, Mark Shirley, Reid Simmons, Rafil Valdis-Perez, Jeff Van Baalen,
Dan Weld, and Peng Wu, provided close comradeship and a constant stream
of intellectual stimulation and feedback on my work and on my presentations
of it. Brian Williams deserves special mention for providing so many patient
explanations, penetrating observations, and encouraging words.

Comments from Eugene Charniak, Johan de Kleer, Tom Knight, Drew
McDermott, John McDermott, Chuck Rich, Gordon Robinson, Bill Swartout,
Dick Waters, and Mike Wellman, sometimes only a single incisive sentence,
all helped to clarify my thinking at crucial moments. Everyone at the MIT
Artificial Intelligence Laboratory contributed to its atmosphere of challenge
and excitement.

The Joshua group and others at Symbolics, including my friends Steve
Anthony, John Aspinall, Brian Bauer, Bob Cassels, Jackie Covo, Doug Evans,
John Hotchkiss, Jim Loftus, Neil Mayle, and Steve Rowley, taught me much
about Al in the world outside this ivory tower.

The love and encouragement of my parents and of my wife, Cristina Ciro,
enabled me to carry the work through to its completion. Their patient and
unwavering support is most humbling of all. This is their success, too!

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the author's artilcial intelligence research

on troubleshooting is provided by the Digital Equipment Corporation, Wang Laborato-

ries, Symbolics, and the Advanced Research Projects Agency of the Department of Defense

under Office of Naval Research contract N00014-85-K-0124.

To my Family

Contents

I Introduction I
1.1 Model-Based Troubleshooting 1
1.2 A Troubleshooting Scenario 6
1.3 Contributions 11
1.4 Organization 14

2 Background 16
2.1 The Symptom-Based Approach 16

2.1.1 Dealing with Uncertainty 17
2.1.2 Organizing Knowledge 18
2.1.3 Diagnosing Multiple Diseases 18
2.1.4 Summary of Symptom-Based Approaches19

2.2 The Model-Based Approach 19
2.2.1 Modeling 20
2.2.2 Behavior Prediction 23
2.2.3 Candidate Generation 24
2.2.4 Discrimination 31
2.2.5 Hierarchic Diagnosis 33
2.2.6 Summary of the Model-Based Approach 35

3 Troubleshooting Scenarios 38
3.1 Clock Generator Examples 40

3.1.1 Troubleshooting the Clock Generator 41
3.1.2 Morals of the Clock Generator Example 42

3.2 Audio Decoder Examples 43
3.2.1 Functional Organization of the Audio Decoder44
3.2.2 Physical Organization of the Audio Decoder49

jI

3.2.3 Audio Decoder Example I.................49
3.2.4 Audio Decoder Example 11 52
3.2.5 Audio Decoder Example II 53
3.2.6 Audio Decoder Example IV 54
3.2.7 Summary of the Audio Decoder Examples 57

3.3 Input Encoder Examples 57
3.3.1 Functional Organization of the Input Encoder57
3.3.2 Physical Organization of the Input Encoder 59
3.3.3 Expected Behavior of the Input Encoder 62
3.3.4 Finding a faulty Input Processor 63
3.3.5 Finding a faulty Console Controller 67

3.4 Summary of Troubleshooting Scenarios 69

4 Representing Circuit Structure 70
4.1 Physical Organization 71

4.1.1 Primitive Components 71
4.1.2 BASIL 74
4.1.3 The Physical Part-Of Hierarchy 76

4.2 Functional Organization 78
4.2.1 The Functional Part-Of Hierarchy 80
4.2.2 Principles for Structural Composition 82

5 Representing Circuit Behavior 86
5.1 TINT 90

5.1.1 Signals 90
5.1.2 Rules 92
5.1.3 Signal Histories 93
5.1.4 Equality 95
5.1.5 Summary 96

5.2 Combinational Behaviors 98
5.3 Sequential Behaviors 103
5.4 Abstractions 107

5.4.1 Temporal Abstractions 110
5.4.2 Composite Abstractions 119
5.4.3 Summary of Abstractions 122

5.5 Event Preservation 124
5.6 Reduction 131

ii

5.7 Synchronization 134
5.8 Encapsulation 140

5.8.1 The Reset Hold Counter 140
5.8.2 The Audio Counter 145
5.8.3 Microprocessors 147
5.8.4 Abstract Buffers 148
5.8.5 Programmed Microprocessors 149

5.9 Related Work 163
5.9.1 Temporally Quantified Statements 163
5.9.2 Intervals and Constraints on Intervals 163
5.9.3 Persistence 164
5.9.4 Temporal Indexing 164

5.10 Summary of Behavior Representation 165

6 Representing Faults and Misbehaviors 166
6.1 Failure Likelihoods 168
6.2 Representing Syndromes 171
6.3 Principles for Using Syndromes 175
6.4 Consequences of Using Syndromes 180
6.5 Summary of Faults and Misbehaviors 183

7 Troubleshooting 184
7.1 Conflicts and Candidates 185
7.2 Decomposition 187
7.3 Ranking and Refinement 193
7.4 Making Observations 200

7.4.1 Prediction Strength and Probe Selection 202
7.4.2 Temporal Quantification and Granularity204

7.5 Evaluation 206
7.5.1 Coverage 206
7.5.2 Resolution 207
7.5.3 Speed 209

7.6 Summary 210

8 Conclusions and Future Work 211
8.1 Engineering Issues 214
8.2 Deriving the Representation 216

111

8.3 Geeraing the Methodology 217

A Scenario Transcripts 220

A.1 Clock Generator Example 221
A.2 Audio Decoder Example I 223
A.3 Audio Decoder Example I with Syndromes 225
A.4 Audio Decoder Example II 228
A.5 Audio Decoder Example II with Syndromes 232
A.6 Audio Decoder Example III 235
A.7 Audio Decoder Example III with Syndromes 241
A.8 Audio Decoder Example IV 247
A.9 Audio Decoder Example IV with Syndromes 252
A.10 Input Encoder Example I 258
A.11 Input Encoder Example II 263 0

B Abstractions and Behaviors 268

C Reset Hold Counter Behavior 273

D Audio Counter Behavior 284

E The Switch Level Model 288
E.1 Pins and other Connections 288
E.2 Resistors 290
E.3 Switches 291

Bibliography 306

iv

List of Figures

1.1 Model-Based Troubleshooting 2
1.2 Model-Based Troubleshooting Problems 3
1.3 A Portion of the Console Controller Board 7
1.4 Likely Suspects After Probing Intermpt 9
1.5 Likely Suspects After Probing React 10
1.6 Likely Suspects After Probing Constant 10

2.1 Behavior Prediction Example 23
2.2 Reasoning from Effects to Causes 24
2.3 Behavior Prediction Example 27
2.4 Reasoning from Effects to Causes 27
2.5 Discrepancies Produce Conflicts 28
2.6 If x is not 1, Only A Could be Broken 29
2.7 Inverter B Could be Pulling x Down 30
2.8 A Short Could be Pulling x Down 30
2.9 Diagnosis of Adder-1 34
2.10 Diagnosis of Adder Substructures 36

3.1 Overall Troubleshooting Program Organization 39
3.2 Clock Generator Schematic 41
3.3 Clock Generator Structure 41
3.4 Audio Decoder Schematic 44
3.5 Audio Decoder Functional Organization 46
3.6 Signal with Too Many Zero Crossings in its First Derivative . 47
3.7 Audio Decoder Physical Organization 50
3.8 Signal with Too Many Zero Crossings 55
3.9 Internal Structure of CSBo1. 56
3.10 Input Encoder Functional Organization 58

v

3.11 Input Encoder Schematic 60
3.12 Input Encoder Physical Organization 61

4.1 Chip Cross Section 72
4.2 Abbreviated AKO hierarchy 74
4.3 A Portion of the ppart-of Relation 77
4.4 Expanded AKO Hierarchy 79
4.5 JK Flipflop Unencapsulated 80
4.6 JK Flipflop Encapsulated as a Toggle 81
4.7 Power Ports of Chip U30 and its Chiplets 83
4.8 Encapsulating Reconvergence 84
4.9 Encapsulating a Sequential Loop 84

5.1 TINT Signal History Example 95
5.2 Combinational Behavior Example 101
5.3 Example with Register Behavior Rules 106
5.4 Abstractions and Behaviors 107
5.5 Example of Abstractions and Behaviors 108
5.6 Sufficiently Complex Abstractions Make Any Behavior Trivial 109
5.7 The Behavior of a Counter with Respect to a "Counting" Ab-

straction 109
5.8 Frequency Divider Implemented with JKFFs 129
5.9 Register Abstractions 134
5.10 Shift Register as Cascade 136
5.11 Reset Hold Counter 141
5.12 Reset Hold Counter Three State Automaton 142
5.13 Audio Counter 145
5.14 The Third Key is Pressed 150
5.15 Functional Organization of Console Controller 156
5.16 Components of B 157
5.17 Components U and C Together form Component E 159
5.18 State Diagram of E 159

6.1 Clock Generator 170
6.2 Audio Counter 177
6.3 Every Component is a Candidate 181

7.1 Predications, Assumptions, and Environments 185

vi

7.2 Physical Organization of Four-Bit Adder 189
7.3 Functional Organization of Four-Bit Adder 189
7.4 Physical and Functional Organizations 190
7.5 Physical and Functional Decompositions of the Four-Bit Adder 191
7.6 XPART-OF Relations in the Four-Bit Adder 192
7.7 Clock Generator 194
7.8 Distinguishing Between Diagnoses 208
7.9 Detail of Audio Decoder 209

C.1 Reset Hold Counter 274

E.1 Typical Switch-Resistor Combination 293
E.2 TTL Inverter as Modeled with TINT 294
E.3 nMOS Inverter as Modeled with TINT 295
E.4 Impasse Example 296

vii

Chapter 1

Introduction

A field engineer plugs in a broken circuit board, makes a half
dozen simple probes with an oscilloscope, and after ten minutes
ends up swapping a chip, which fixes the problem.

A model-based troubleshooting program spends a day simulat-
ing the ezpected behavior of the same misbehaving board, and re-
quests that a logic analyzer be used to capture a certain subset of
the signals. After some hours of computation it concludes that
any of the 40 chips or 400 wires on the board could be responsible
for the misbehavior.

What does the field engineer know that the program does not? How can
a model-based troubleshooting program represent and use that knowledge?
Both the program and the field engineer have the circuit schematic and the
specifications of the individual chips. The field engineer additionally has
expectations about the design of the circuit, expectations about which signals
in the circuit ought to be changing and how fast, and expectations about the
kinds of failures that are likely to occur in digital circuits. Incorporating this
knowledge into the circuit model makes it possible to be more discriminating
in the generation of diagnoses and more efficient in the use of observations.

1.1 Model-Based Troubleshooting

Model-based troubleshooting is driven by the interaction of observation and
predictions (Figure 1.1). A device model produces predictions about what

Ok.

2 CHAPTER 1. INTRODUCTION

ought to be observed; comparison with observations of the actual device
produce discrepancies; these discrepancies are then traced to their possible
underlying causes in the model and repairs of the actual device proposed.

Figure 1.1: Model-Based Troubleshooting

ACTUAL OBSERVED PREDICTED MODEL
DEVICE BEHAVI0R BEHAVIORpedcin

observations

DISCREPANCIES

This report describes a model-based troubleshooting program. Its pri-
mary input is a model of a digital circuit that is a network of components
and connections. Each component has a description of its dynamic time- --

dependent behavior and each connection transmits signals between compo-
nents. The secondary input to the program is a description of the stimuli
presented to the circuit and observations of its actual responses. The model
uses those stimuli to predict what the outcomes of observations ought to be.
When discrepancies are discovered, the program produces lists of components
that could be responsible for the discrepancies, ranked by their relative likeli-
hood. The program interactively suggests what observations should be made
next to discriminate among these possibilities, then uses any new observa-
tions to incrementally focus on the correct diagnosis.

Model-based troubleshooting has been extensively demonstrated on sim-
ple devices. One of the prime motivations of this work is to scale up model-
based troubleshooting techniques to deal with significantly more complex
devices. The fundamental problems in scaling model-based troubleshooting
technology to do this can be understood as problems within each element
of the paradigm (Figure 1.2). These five problems and their solutions are
discussed individually below.

Models are incomplete. No model can possibly capture every detail of

1.1. MODEL-BASED TROUBLESHOOTING 3

Figure 1.2: Model-Based Troubleshooting Problems

Models are incomplete

ACTUAL • OBSERVED PREDICTED 4 MODEL
DEVICE BEHAVIOR BEHAVIOR

observations

Obeervation are wemtly Predictions are costly

Observations are incomplete Predictions are incomplete

DISCREPANCIES

the actual device. Lack of detail in the device representation means that
some failures will be indistinguishable and others will be misdiagnosed. For
example, if a wire connecting several terminals is represented as a single
component, then the program will diagnose a break anywhere along the wire
as a failure of the whole wire. If the model says that the only devices affecting
the state of the wire are the ones that it was meant to connect, then the
troubleshooting program will misdiagnose a short between that wire and
another as having been caused by one or more other failures. The selection of
the primitive elements of the device representation constitutes a commitment
to a set of failures worth identifying and worth distinguishing from each other.

Models are incomplete, but the consequences of that incompleteness can
be controlled in part by the choice of primitive elements and their connections
to each other. Principles are needed for making these choices in a way that
sacrifices completeness in favor of efficiency, since the aspiration is to trou-
bleshoot circuits with many thousands of wires, transistors, and interactions
between them. One such principle is that physically separate components
with indistinguishable failure effects can be treated as a single component.
Another principle is that components whose failures result in the same repair
can be treated as a single component. A third principle is that unlikely fail-
ures are not worth representing explicitly, so that components whose failures
are individually very unlikely can all be treated as a single aggregate com-

4 CHAPTER 1. INTRODUCTION

ponent whose failure is more likely. These principles introduce additional
approximations into a device model that will make some component failures
indistinguishable from one another. A deeper problem arises from the fact
that any model explicitly represents only some of the possible interactions
between components; the program will misdiagnose any failures involving
interactions that the model does not represent. The standard example is
an unintentional short between two wires that are unrelated in the circuit
structure diagram. The best that the troubleshooting program will do is to
diagnose this as two failures, one in each wire. The approach taken in this
work is not a general solution: at any given level of detail, decisions about
which interactions between components ought to be represented are made
solely on the basis of what is needed to explain the normal operation of the
device. In the case of wires, only the interactions with the devices they are
supposed to be connected to are represented, hence shorts are misdiagnosed.
When it comes time to repair the two wires one may assume that their true
(mutual) problem will be discovered by visual inspection.

Obseraiovas are costly. Taking measurements is nearly always appropri-
ately regarded as being more costly than computation spent on choosing that
measurement. The problem that scaling brings is that the more complex the
device, the more events there are to observe, and the shorter the intervening
intervals, the more difficult they are to observe. It is, for example, more
costly to set up a logic analyzer to capture digital signals at particular mo-
ments than it is to observe whether they are staying at a constant zero or
one.

Observations are costly, and although there is nothing that can be done
about this directly, the device model can describe signals in ways that are
relatively cheap to observe. For example, it is easier to observe whether a
particular signal is rising or falling than to observe its changing value at every
moment. This is an example of a useful temporal abstraction; a long sequence
of changes of value can be summarized into a simple description that is stable
over a longer time interval. A behavior model can use this kind of temporally
abstract observation to make other temporally abstract predictions, without
requiring that any explicit deductions ever be made about the individual
changing values. As a general principle temporal abstractions are useful
because they provide a better match to the observations that can be made
cheaply.

Observations are incomplete and imprecise. Discrepancies can only be

1.1. MODEL-BASED TROUBLESHOOTING 5

detected where observations can be made. But even when observations can
be made, they may be too coarse to detect discrepancies with the model. For
example, if the model predicts that a certain current should be flowing in a
wire, but the troubleshooter can only measure currents to within 20%, then
the current could actually be wrong and yet yield no apparent discrepancy,
hence yield no new information. One of the consequences of incomplete
observations is that there will inevitably be pairs of diagnoses that cannot
be discriminated, since their only difference might be in some unobservable
feature. Inability to make certain observations economically imposes limits
on the ability of the troubleshooting program to isolate faults.

Because observations are incomplete, ambiguity among the logically pos-
sible diagnoses is inevitable. If the troubleshooting goal is to find the most
likely diagnosis, however, other sources of information are available. One of
these sources is information about the relative failure rates of different phys-
ical components, from which the troubleshooter can produce a rank ordering
of the diagnoses by plausibility. A related source is information about how
components usually fail and what misbehaviors they produce; this can be
used to refine the likelihood estimates for some diagnoses. These sources
of knowledge alleviate the indiscriminacy caused by incomplete observations
because they can be used to discount unlikely diagnoses and leave the re-
maining (relatively more likely) ones behind.

Prediction is costly. It is impractical within a troubleshooting session to
simulate an entire circuit board at the gate level for more than a few clock
cycles. The culprit is not the structural complexity of the board in number of
gates or wires. The culprit is the complexity of the behavior - the number
of events that happen and need to be simulated. Waiting for more computing
power to apply to the problem is not a solution if the boards to be diagnosed
themselves get faster and more complex.

Prediction is costly, but this can be addressed by using temporally ab-
stract behavior descriptions. Temporal abstractions can summarize many
individual events into an aggregate description stable over a longer interval.
For example, a given signal may be described as a sequence of many thou-
sands of individual alternating zeroes and ones, or more abstractly in terms
of the number of falling edges that have appeared, or even more abstractly
as the number of one-to-zero cycles per unit time. Although the value of the
underlying signal may be changing many times per second, the average num-
ber of cycles per unit time may be relatively stable. Descriptions that are

6 CHAPTER 1. INTRODUCTION

stable in this way are less costly to make predictions from. For example, the
troubleshooting scenario to be presented shortly is simple because the behav-
ioral complexity of microprocessors can be reduced to a simple relationship
between the rates of change at their inputs and outputs.

Predictions are incomplete. A consequence of using abstract models of
behavior to achieve more economical prediction is that the resulting predic-
tions may be imprecise or ambiguous. Predictions that are too coarse make it
difficult to detect discrepancies with observations, and this in turn sacrifices
some of the ability of the program to isolate faults.

Economical predictions are incomplete, but the indiscriminacy that re-
sults can be alleviated by using multiple levels of behavioral abstraction. If
needed, more detailed predictions can be made for only a subset of the entire
device. This may allow more discrepancies to be detected and thereby rule
out some diagnoses.

1.2 A Troubleshooting Scenario

The troubleshooting program described in this report uses a rich and mul-
tilayered circuit model that is designed to address the problems identified
above. The model represents the physical organization in terms of chips,
wires, and so forth, and represents the functional organization in terms of
how its parts interact to achieve the overall intended behavior. Its levels of
detail range from a qualitative model of resistors and switches up to arbitrar-
ily large computational modules. It represents the behaviors of components
using both traditional digital abstractions and a novel set of temporal ab-
stractions that describe signals in terms such as cycles, frequency, and change.
Finally, it incorporates knowledge not just about how the circuit components
should work, but for a few, how they break and how often. Only one cir-
cuit has been modeled this way, but it is large, complex, internally diverse,
and real: a portion of the Symbolics 3600 Console Controller Board that
contains two microprocessors (both running programs with several hundred
instructions), thirty supporting chips, and one hundred sixty wires.

Seven troubleshooting scenarios using this circuit will be presented in this
document. One of these scenarios, presented here in abbreviated form, serves
to illustrate the distinctive features of the circuit model and the interaction
of the troubleshooting program with it.

1.2. A TROUBLESHOOTING SCENARIO 7

The Console Controller Board is responsible for transmitting keystrokes
and mouse motions to the host computer and for decoding the video signal
coming from the host for display on a CRT and the audio signal for output to
a speaker. Some keystroke sequences can change the volume of the speaker,
the brightness of the CRT, and so forth. Figure 1.3 shows abstractly a few of
the components (boxes) and the signals through which they interact (arrows).

Figure 1.3: A Portion of the Console Controller Board

~Button

by B and sent on to two places: the reset circuitry U and to a microproces-

sor M1. The microprocessor M1 polls the mouse inputs. Each tenth of an

inch of mouse motion along its z or y axes causes M1 to interrupt a second
microprocessor M2 with a two-byte message. M2 responds to the interrupt

through some bus control circuitry D. After receiving the two-byte message
M2 then sends the message on to the host, again through the bus control

circuitry D. The host displays the changed mouse position on the screen.

Suppose the Console Controller Board reset button is pressed and the a m1

mouse roed around for a couple of seconds. The model predicts that if all

16 chips are working, then mouse motion will be observed at Output. The

model is too coarse to predict how fat or how far the cursor will move on

the screen - it predicts only that motion will be observed. This temporally
abstract behavior is both more efficient to make predictions from and easier
to observe than the traditional clock-cycle-by-clock-cycle model of digital
circuit behavior.

S

8 CHAPTER 1. INTRODUCTION

But suppose the mouse cursor does not move at all. The program indi-
cates that any one of the 16 chips might be broken; each chip is a suspect.
There are now many possible signals to probe, and the program ranks them.
The likeliest chip to fail by far is the onboard oscillator 0. The program
suggests probing its output; suppose it is observed to have a frequency of
approximately 10 Mhz.

The oscillator 0 can be discounted as an unlikely suspect using knowl-
edge in the model about how some components fail. The model says that
when oscillators fail, they usually fail catastrophically, producing an output
frequency of 0. Because the signal was observed to be changing, the program
concludes that the oscillator chip is probably not responsible. It is still a
suspect, just a relatively unlikely one. This leaves 15 chips as likely suspects.

The program now needs to suggest another probe. To suggest a probe it
considers the predictions that the model makes at each signal. For example,
the model predicted that the output of the oscillator 0 should have frequency
10 Mhz, and the probe verified this. The model also predicts that the Clock
signal should have frequency 5 Mhz. The representation of these clock signals
in terms of their frequencies is an example of a temporal abstraction; millions
of underlying events (rising and failling edges) have been abstracted into a
simple description that is easy to reason about and easy to observe.

Although the model represents many signals in temporally abstract ways,
there are other signals for which the standard digital vocabulary suffices.
For example, the Constant output of C is a constant I throughout the entire
session, and the model predicts that. Also, the Reset signal should be asserted
while the reset button is pressed and unasserted otherwise, and the model
predicts that as well.

These predictions - that the clock frequency is 5 Mhz, and so forth -

can be used in subsequent predictions. The temporally abstract behavior
model for the first microprocessor MI says that if the Clock input is 5 Mhz,
the Constant input is 1, and the Reset signal is not asserted, then the mi- -

croprocessor is running. While M1 is running, each movement of the mouse
results in the Interrupt line being asserted. If all that is known is that the
mouse is moving around, the model does not predict exactly when it will be
asserted; rather it predicts that the signal will be changing while the mouse
is moving and a constant 1 value otherwise.

The model makes many other predictions, but these are all that will be
needed in this example. The important one at the moment is the predic-

1.2. A TROUBLESHOOTING SCENARIO 9

tion that Interrupt signal will be changing while the mouse is moving. This
prediction depends on eight chips working properly, those in all components
except M2 and D.

The probe that the program now suggests is the Interrupt output of Ml.
Suppose the interrupt line is probed, revealing that it is a constant I even A

while the mouse is rolled around. This is a discrepancy, since it was supposed
to be changing so long as those eight chips were working properly. One of
the chips was the oscillator, which has been shown to be an unlikely suspect;
this leaves seven as likely suspects (Figure 1.4).

Figure 1.4: Likely Suspects After Probing Interrupt

the reset button was pressed, so long as the five chips in 0, B and R were
working. Probing the Reant signal reveals that upon pressing the button it

is asserted, then unasserted. This means that the chips in R are no longer
suspects, since their failure could not explain the observations made. Now
there are 5 likely suspects (Figure 1.5).

The model predicted that the Constant signal should be 1 throughout the
session, so long as the chips in C were working. Probing this signal reveals
that it is indeed 1, s the chips in C are no longer suspects. Now there are
3 likely suspects (Figure 1.6).

Finally, a probe of the Clock signal reveals that it has frequency around
5 Mhz. The model says that if the clock input to Ml has a high enough

10 CHAPTER 1. INTRODUCTION

Figure 1.5: Likely Suspects After Probing Reset

0 B . Buttn em

Figure 1.6: Likely Suspects After Probing Costant

frequency and the reset input is not aserted, then the microprocessor shouldbe running. This means that the Interrupt signal should be changing, whichcontradicts previous observations. Hence M is the only remaining suspect
and the program terminates.

The interesting thing about this scenario is that it is so simple compared
to the underlying complexity of the real circuit. The circuit is structurally
complex; there are thousands of transistors in the chips, hundreds of possible
flaws in the wires alone. It is behaviorally complex; consider all the micro-

Clock

1.3. CONTRIBUTIONS 11

processor instruction cycles that occurred during the one second of mouse
motion. People can troubleshoot the circuit without thinking about all those
details, and the program can troubleshoot it without explicitly representing
them.

The important thing about the model is not that it uses abstractions
to deal with complexity; any representation does that. The important idea
is that there are structural and behavioral abstractions appropriate to trou-
bleshooting. Temporal abstractions, in particular, allow the program to avoid
simulating long sequences of events and instead reason in terms of "moving"
mice, "running clocks, "changing" signals, and so forth. There are also
principles by which those abstractions can be manually applied to a com-
plex circuit to construct the rich representation that makes troubleshooting
of complex devices tractable. The model of the Console Controller Board
is appropriate for model-based troubleshooting because it was constructed
according to those principles.

1.3 Contributions

This thesis presents a methodology, a representation, and an implemented
program for troubleshooting digital circuit boards at roughly the level of
expertise of a human novice.

The methodological claim is that existing methods for model-based trou-
bleshooting have not scaled up to deal with complex digital circuits because
traditional circuit models do not explicitly represent aspects of the device
that troubleshooters would consider important. For complex devices the
model of the target device should be constructed with the goal of trou-
bleshooting explicitly in mind.

Given that methodology, there are principles by which complex circuits
can be represented so as to make those important aspects explicit and thereby
help make the troubleshooting task tractable. Some of the salient principles
follow.

One set of principles concerns how the structure of a given circuit should
be represented.

* Components in the representation of the physical orgaization of the
circuit should correspond to the possible repairs of the actual device.

12 CHAPTER 1. INTRODUCTION

The representation of physical organization plays a central role in the
troubleshooting program, and the program represents all of its diagnoses in
terms of the physical components that could be damaged. In the scenario
presented earlier, for example, the diagnoses were expressed in terms of chips,
which are "repaired" by replacement. Making the elements of this represen-
tation correspond to possible repair actions ensures that the troubleshooting
program will not waste effort trying to discriminate between diagnoses that
have identical repairs.

e Components in the representation of the functional organization of the
circuit should facilitate behavioral abstraction.

The only role that an explicit representation of functional organization
plays in model-based troubleshooting is to make behavior prediction more
efficient. For example, the only reason that the component M2 exists in the
model is because the combined behavior of the four chips inside it can be
described more simply in the aggregate than individually. In extracting the
functional organization from a raw schematic the modeler need only represent
what will make the behavior easiest to reason with, rather than necessarily
what the designer had in mind.

A second set of principles concerns the representation of circuit behavior.

* The behavior of components should be represented in terms of features
that are easy for the troubleshooter to observe.

Some features of time-varying signals are easier to observe than others.
The frequency of a clock, for example, is easier to observe than the timing
of each of its individual transitions. Expressing the behavior of components
in the terms that are more easily observed is a way of choosing where to
sacrifice precision in favor of efficiency.

e The behavior of a component for which changes on its inputs always
results in changes on its outputs should be represented in temporally
coarse terms.

A powerful representation technique uses relationships between compo-
nent inputs and outputs in terms that are stable over long periods of time or

1.3. CONTRIBUTIONS 13

that summarise much activity into a mag: , ,ter In the troubleshoot-
ing scenario, the number of mouse step uw ;. --v a period of seconds (a
single parameter describing macl acb-vi -i the number of times
the interrupt line would be asserted c - - -mch relationships can
be derived when each individual ckaage i - o- -m* ether changes.

e A temporally coarse behavior deacnptaoa that only coers part of the
behavior of a component is better thain sot covering any at all.

Although the full behavior of a component may be too complex to reduce
to a simple relationship between (say) the number of changes on its inputs
and the number of changes on its outputs, there may be such a relationship
that involves only a subset of its inputs, assuming that the others are held
constant. In the case of the microprocessor, for example, the relationship
between the mouse motion inputs and interrupt output holds only so long
as the clock input is running and the reset input is not asserted. Since the
troubleshooting program will eventually use the more detailed behaviors as
long as the diagnosis remains ambiguous, no diagnostic resolution will be lost
by only representing a subset of the possible behaviors abstractly.

* A sequential circuit should be encapsulated into a single component to
enable the description of its behavior in a temporally coarse way.

Although the individual behaviors of the components in a sequential cir-
cuit may not lend themselves to temporally coarse descriptions, the loop may
be performing a simple function when taken as a whole. For example, the
R component in the troubleshooting scenario is actually a sequential circuit
with 214 distinct states. When viewed in temporally coarse terms, however,
there is a simple correspondence between the states of the button and the
state of the output. Encapsulating the group of components makes it pos-
sible to reason about its behavior in a temporally coarse way, and as in the
troubleshooting scenario described, it may not be necessary to ever consider
the details of its behavior.

A final set of principles concerns what knowledge about failures should
be represented explicitly.

a An explicit representation of a given component failure mode should
be used if the underlying failure has high likelihood.

14 CHAPTER 1. INTRODUCTION

Components break in the field in certain ways much more often than
other ways. Chips, for example, fail more often with breaks in the tiny wires
that connect their pins to the silicon chip inside than in other ways. The
benefit of knowledge about such failures comes when they are inconsistent
with the symptoms, since this can reduce the ambiguity among the possible
diagnoses.

* An explicit representation of a given component failure mode should be
used if the resulting misbehavior is drastically simpler than the normal
behavior of the component.

If a component with normally complex behavior has some internal fault or
faults that cause it to misbehave catastrophically, then any partially correct
behavior observed for the component makes it a less likely suspect. In the
troubleshooting example, the oscillator was known to fail in a way that made
it produce a zero output frequency, and that misbehavior was easy to rule
out even though the measurement of its output was imprecise. The benefit of
knowledge about these failure modes is especially great when the misbehavior
has high likelihood as well.

The implemented model of the Console Controller Board is a concrete
embodiment of the methodology and representation principles. The trou-
bleshooting program that uses that model is an extension of standard model-
based troubleshooting technology, incorporating solutions to technical prob-
lems of (i) hierarchic diagnosis with multiple and tangled hierarchies (ii) inte-
gration of explicit knowledge about failure modes into a framework for diag-
nosing multiple faults, and (iii) troubleshooting circuits with time-dependent
behavior.

1.4 Organization

This document is primarily organized by the different kinds of circuit knowl-
edge to be represented. Preliminary background material is contained in
Chapter 2, which presents an overview of knowledge-based automated di-
agnosis, especially model-based troubleshooting. Chapter 3 presents the
troubleshooting scenarios for the Console Controller Board so as to pro-
vide context for the many details to follow. The next four chapters contain
the essential ideas. Chapter 4 presents a representation for circuit structure

1.4. ORGANIZATION 15

motivated by troubleshooting requirements. Chapter 5 contains the bulk
of the document and describes a representation for circuit behavior using
multiple temporal abstractions and a temporal reasoning program for pre-
dicting behavior using those same abstractions. Chapter 6 describes how
faults and misbehaviors are modeled and how this knowledge is used by the
troubleshooting program to heuristically discount unlikely diagnoses. Chap-
ter 7 presents the details of the troubleshooting engine and how it interacts
with the choices made in representing circuit structure and behavior. Fi-
nally, Chapter 8 summarizes and presents ideas for future work. Sections on
related research are distributed throughout the individual chapters.

Chapter 2

Background

A number of knowledge-based programs for automated diagnosis have been
built for a variety of domains using a variety of implementation technologies.
These programs can be characterized by the knowledge that they represent
explicitly: (i) associations between underlying diseases or faults and their
consequences for the system as a whole, as opposed to (ii) knowledge about
the parts of the system and how they interact to produce its overall behavior.
In medical diagnosis, for example, the contrast is between knowledge about
diseases and their symptoms versus knowledge about the underlying mecha-
nism; it is the difference between knowledge that emphysema causes shortness
of breath versus knowledge that CO2 exchange is proportional to the surface
area of the alveoli. Programs that rely on the former type of knowledge will
be termed symptom-based and the latter model-based. A number of programs
incorporate both kinds of knowledge, but for any given program it is typically
clear which one predominates. A brief review of each paradigm is presented
below. One particular program for model-based diagnosis will be presented
in some detail, since it provides the basis for the troubleshooting technology
in this report.

2.1 The Symptom-Based Approach

One approach to automated diagnosis is to organize the program as a
database that associates underlying diseases (faults) with their outward
symptoms (manifestations). To find the underlying problem from a set of

16

2.1. THE SYMPTOM-BASED APPROACH 17

symptoms requires straightforward lookup or pattern matching. The notion
of a "fault dictionary" is the canonical example of this approach. The princi-
pal difficulty in this approach revolves around the coverage of diseases in the
knowledge base. First, associations between single diseases and their symp-
toms does not easily support reasoning about interactions between diseases.
Second, even if multiple simultaneous diseases can be handled the program
is limited to considering those individual diseases that were anticipated and
explicitly included by the knowledge base builder - there is no theory about
how to enumerate the possible diseases of a given system. Third, given a
knowledge base intended to be used for diagnosing a particular system there
is no principled way to modify the knowledge base when there has been a
change in the design (or in our understanding) of that system. Although the
paradigm has these inherent limitations and is not used here, some important
techniques that generalize beyond it were first developed within this tradi-
tion: techniques for dealing with uncertainty, for organizing large knowledge
bases, and for dealing with multiple diseases. These techniques are each
treated briefly below.

2.1.1 Dealing with Uncertainty

The notion of a disease-symptom database requires some elaboration in do-
mains for which the underlying diseases have widely varying likelihoods and
for which the associations between diseases and symptoms is less than cer-
tain. One approach is to assign prior probabilities to the diseases, assign
conditional probabilities to the symptoms given each disease, and use Bayes'
Theorem to find the likeliest disease given a set of symptoms [Szolovits78].
Many automated diagnosis systems use statistical information in this form in
spite of the large number of conditional probabilities needed when diseases
or symptoms are not independent. One reason for the enduring popularity of
the probabilistic framework is that it allows the use of decision theoretic tech- ..
niques to choose observations that are most likely to reduce the ambiguity
among competing diagnoses. Estimating ambiguity using Shannon entropy
and choosing the next observation based on a one-ply lookahead turns out to
provide good results on average [Gorry73]. A non-Bayesian approach to deal-
ing with uncertain knowledge is taken by the MYCIN program [Shortliffe76],
which computes "certainty factors" for its conclusions, but it suffers from the
same difficulties with interacting diseases as Bayesian approaches.

18 CHAPTER 2. BACKGROUND

2.1.2 Organizing Knowledge

Obtaining diagnostic coverage of any interesting domain requires the mainte-
nance of a large knowledge base. This in turn implies the need for principles
for organizing this knowledge. Organizing knowledge about diseases, symp-
toms, and diagnostic procedures into frames [Minsky75] appears in the diag-
nosis program PIP [Pauker76]. The use of frames implies no commitment as
to whether knowledge about diseases, symptoms, or causal mechanisms will
be stored; rather it allows modularisation of the knowledge base and thereby
simplifies its maintenance. The organization of diseases and their symptoms
into specialization hierarchies, as in the internal medicine diagnosis program
INTERNIST [Pople82], is an elaboration of this idea. A hierarchic organiza-
tion makes only a minimal commitment to the character of the knowledge,
but it does allow the program to deal with groups of related diseases more
efficiently. A stronger organizing principle appears in the glaucoma diagnosis
program CASNET [Kulikowski82], in which knowledge is organized around
disease states and their temporal progression. This network of states and
their successor relationships was intended to represent a causal explanation
of the disease. Although the use of this knowledge in CASNET is probabilistic
and not substantially different from other symptom-based programs, it was
recognized that causality could be a powerful organizing principle because
the knowledge acquired from domain experts is often couched as categorical
explanation that can be translated into causal terms.

2.1.3 Diagnosing Multiple Diseases

Among the most difficult cases in medicine and other diagnostic tasks are
those in which more than one underlying disease or fault is present. One ap-
proach is to assume that all underlying diseases are statistically and causally
independent. The program can then simply evaluate the likelihood of ev-
ery disease individually. This approach is taken in MYCIN [Shortliffe76] but
it requires such strong independence assumptions that it is only feasible in
restricted domains. Another approach is taken by INTERNIST [Pople82],
in which diagnoses are incrementally constructed by repeatedly choosing a
disease that explains the most unexplained symptoms, until there are no
unexplained symptoms left. While intuitively appealing, this does not guar-
antee coverage of the possible disease combinations. The approach used in

2.2. THE MODEL-BASED APPROACH 19

[Reggia83] addresses this coverage problem by considering every set of dis-
eases whose combined symptoms cover all and only the observed symptoms.
By Occam's razor, the hypotheses that should be considered are the minimal
covering sets - those that do not include diseases not needed to explain the
symptoms. Using probabilistic knowledge the likeliest of the minimal combi-
nations is then chosen as the preferred diagnosis. Each of these approaches,
however, perform poorly when the symptoms of the various diseases interact.

2.1.4 Summary of Symptom-Based Approaches

Work on symptom-based programs for automated diagnosis has yielded a
number of powerful and useful techniques. These include (i) observation and
test selection based on decision theory, with entropy as the heuristic evalua-
tion function (ii) the use of causality as an organizing principle for diagnostic
knowledge, and (iii) the formalization of diagnosis in terms of covering sets,
allowing for diagnosis of multiple simultaneous diseases. The principal diffi-

culty with symptom-based approaches is that the correctness and coverage of
the knowledge base is difficult to guarantee, especially in the face of changes
to the underlying system. When the available domain theory is weak, with
only empirical associations between underlying diseases and observable symp-
toms, the symptom-based approach is reasonable and can be successful. Its
limitations, however, motivate the model-based approach discussed below,
which can provide better coverage and extensibility in domains where those
properties are important.

2.2 The Model-Based Approach

Model-based troubleshooting is a widely investigated and well established
methodology. The majority of the programs that share this paradigm are
for diagnosis of designed artifacts such as circuits, so the term "device" will
be used interchangeably with "system," and the notion of a "disease" will
be replaced by that of a "fault." The key to the model-based approach is
the representation of the structure and behavior of the correctly functioning
device. This representation is used to make predictions about the behavior
of the real device and about the outcomes of possible observations. Dis-
crepancies between the predicted behavior and the actual observations are

20 CHAPTER 2. BACKGROUND

traced to sets of possibly malfunctioning components. Each set of compo-
nents whose failure could explain the observations will be called a candidate;
these candidates can be ranked according to their relative likelihood. As
new discriminating observations are added some candidate will eventually
dominate the others and be chosen as the final diagnosis, a set of compo-
nents believed to be failing. With a hierarchic representation of structure,
the isolation process can be repeated recursively on the substructure of each
component believed to be faulty.

The key advantage of using knowledge about the correct behavior of com-
ponents is that it dispenses with the need for storing associations between
underlying faults and observed misbehaviors of the entire device. Instead,
any subset of components whose predicted combined behavior disagrees with
the behavior actually observed contains at least one broken component. By
gathering more observations the troubleshooter can narrow down this set.
Furthermore, this requires no commitment to the number of faults actually
in the device, since the model can support reasoning about the interactions
between any number of failing components. Finally, as noted earlier, when
causal knowledge is available it can be easier to obtain than knowledge about
overall associations between symptoms of failures and possible underlying
faults.

It is useful to consider model-based troubleshooting in terms of four ba-
sic activities: modeling, behavior prediction, candidate generation, and dis-
crimination. The following sections discuss each of these activities; a more
complete survey appears in [Hamscher87].

2.2.1 Modeling

In model-based troubleshooting the notion of a "device model" is almost
universally understood to mean a lumped element description, that is, the
structure of the device is represented as a network of typed components and
connections between them. Examples of models in vasious domains include:

* Circuit schematics with resistors, diodes, and so forth. This rep-
resentation of analog circuits is used in INTER [deKleer76], WAT-
SON [Brown76], SOPHIE [Brown82], IDS [Pan84], IN-ATE [Cantone83],
DEDALE [Dague87], and others (Milne85j.

2.2. THE MODEL-BASED APPROACH 21

* Circuit schematics using logic gates and higher-level digital com-
ponents such as multiplexors and adders. This representation is
used in HT [Davis84, DART [Genesereth84], and others [Friedman83]
[AbuHanna88l.

" Piping and instrumentation diagrams, which include components such
as valves, potentiometers, lamps, and so forth, used in LES/LOX
[Scar185].

* Models of human physiology. Fluid models in terms of compartments,
their permeable membranes, and so forth were used by ABEL [Patil8l],
by the system proposed in [Kuipers84], and by the Heart Failure Pro-
gram [Long86]. A model of the human nervous system in terms of
unidirectional neural pathways was used in LOCALIZE (First82J.

The behavior of the entire device is taken to arise from the interaction of
the behaviors of the individual components through the connections. Devel-
oping a particular description involves choosing a vocabulary of components
and their behaviors, then representing the device as a connected network of
these components. Therein lies a key advantage of model-based troubleshoot-
ing over traditional approaches: for designed artifacts, it can work directly
from device models already developed for design and analysis. Model-based
circuit troubleshooting, for example, can in principle work from ordinary
circuit schematics and board layout information needed for design and man-
ufacture. Therein also lie some of the deepest problems in the methodology:
identifying the principles for building device models that are appropriate for
model-based troubleshooting when the inherited models are inappropriate.
Indeed, one of the reasons that there are relatively few projects using the
model-based approach in medical domains is the scarcity of good analytic
models for any substantial system.

The modeler confronts three goals simultaneously: achieving fidelity, pre-
cision, and efficiency. A model has fidelity when it does not support incorrect
predictions about the device. A model has precision to the extent that the
predictions it makes are strong enough to be falsifiable by observations of the
actual device. A model is efficient when the work needed to make predictions
using it is proportional to the benefits to be gained.

Fidelity is the primary modeling goal in troubleshooting. This is because
if the model makes incorrect predictions, then discrepancies between the ac-

22 CHAPTER 2. BACKGROUND

tual device and the model will be wrongly blamed on failures in the device.
One way of ensuring fidelity is to (i) ensure that the primitive elements of
the model support correct predictions about the corresponding primitive ele-
ments of the device when they are in isolation, and (ii) ensure that the ways
in which the primitives can be composed preserves fidelity, just as the compo-
sition of the real elements of the device does not change those elements. This
is the basic idea behind the principle of no function in structure [deKleer84].
No function in structure means that the description of a component behavior
may not rely on the correct functioning of the whole device.

Ensuring that the models of primitive components are correct in isolation
involves making sure that all the ways they could interact with other compo-
nents are represented explicitly. For example, to say that "when the switch
is closed current will flow" is incorrect because it neglects the fact that a
voltage drop is required for current to flow. It also neglects to mention that
if there is a temperature differential between its terminals there will be a
conductive heat flow. Nor does it mention that if the switch were shorted to
some wire elsewhere in the circuit then current could flow through that short.
Any such interaction not represented in the model is a potential source of
misdiagnoses, and the more interactions left out, the worse the problem.

Precision is another modeling goal. A trivial device model would make
no predictions at all; it has fidelity, since it makes no false predictions, but
it is useless for troubleshooting because it cannot produce any discrepancies
either. A useful model produces predictions that can be confirmed or denied
with the available observations.

Finally, the more precise the model and the greater its fidelity, the less
efficient it is to use. Consider simulating any substantial digital circuit with
component models that included not only voltages and currents in the wires
and transistors, but the temperature and specific heat of each contiguous
piece of metal and semiconductor, the electromagnetic interactions with ev-
ery other component, and so forth. A model with so much detail is obviously
impractical and highlights the key dilemma for the modeler: how to sacrifice
fidelity and precision in ways that gain efficiency. Of these, sacrificing fidelity
is more serious, since it results in incorrect diagnoses, while sacrificing pre-
cision only results in ambiguity among different diagnoses. Interactions can
be ignored for which only trnlikely failures would make the interactions have
noticeable effects. In the switch example earlier, being shorted to another
wire in the circuit is possible and could have noticeable effects on the switch,

2.2. THE MODEL-BASED APPROACH 23

but if shorts are unlikely failures in general it is reasonable to ignore that
possible interaction in the switch model.

2.2.2 Behavior Prediction

The prediction task encompasses any categorical reasoning about the state of
the device based on observations of its behavior. Given a device model built
up as a network of components each with its own local behavior description,
to a first approximation behavior prediction can be done by propagating
many individual predictions local to each component.

For example, suppose both inputs to an adder component Adder-I are
believed to be 2 (Figure 2.1). The output of the adder can then be computed
using only local knowledge about its intended behavior. Similarly, the output
of Adder-2 can be predicted using its two inputs.

Figure 2.1: Behavior Prediction Example

2 ~ 4
2 8
2 4

Behavior prediction in that case is simply a kind of simulation: conclu-
sions about the adder outputs were based on their inputs. However, the
behavior model need not only predict outputs from inputs, but can enforce
any logical relationship between the values carried by connections in the de-
vice. For example, if one input to Adder-2 is 4, and the output is 6, then
the other input is predicted to be 2 (Figure 2.2). Similarly, if one input to
Adder-1 is 2, then the other input is deduced to be 0.

The technique of predicting behavior by accumulating local predictions
can be extended to reasoning about time-dependent behavior. For example,
when all the inputs and initial state of a flip-flop are known over a cer-
tain interval of time then the outputs can be predicted over that interval

24 CHAPTER 2. BACKGROUND

Figure 2.2: Reasoning from Effects to Causes

X
0 2

as well. The obstacle that behaviorally complex devices present is that in
general this means explicitly computing and representing every event. In
the flip-flop example, the events in question are changes of boolean value.
Reasoning about the behavior of a digital circuit over any appreciable length
of time is impractical; the culprit is the sheer number of clock transitions
and consequent changes of state that might be involved. Devices with com-
plex time-dependent behavior motivate the use of abstractions that allow
predictions to be made without having to ex"licitly construct such extensive
sequences.

For efficiency, the nominal behavior of the device given some standard
stimuli may be stored as part of the model. In the model of human acid-base
and electrolyte equilibrium in ABEL [Patil81], for example, each parameter
of the model has an expected value assuming normal patient activity (for
example, normal fluid intake). Similarly, the troubleshooting systems of
[Cantone83] and [Milne85] store nominal values at circuit nodes for each
of a fixed set of tests. This is at least a partial solution to the problem
of expensive predictions. This thesis takes a different approach, focusing
instead on having abstractions that will support economical prediction.

2.2.3 Candidate Generation

When discrepancies are found between the observed behavior and the be-
havior predicted by the device model, candidate generation produces one or
more explanations for those discrepancies. There are at least three ways of
approaching this task.

The first technique is to associate with each prediction made in the model

2.2. THE MODEL-BASED APPROACH 25

the sets of components whose correct behavior would support that prediction.
For example, the prediction in Figure 2.1 that the output of the second
adder is 8 would be supported by the set of components {Adder-1, Adder-
2}. With this supporting information, each discrepancy can be explained by
the failure of one or more of the components in those sets. For example, if
the output was observed to be 6 instead of 8, then at least one of those two
components is broken. If there are several discrepancies, then the broken
components must form a covering set (as in [Reggia83], where the symptoms
of the diseases present must form a covering set of all observed symptoms). If
a single failure is assumed, then the candidates form the intersection. There
are differences in the machinery - especially in the way that dependencies
between predictions and components that support them are recorded - but
this idea is at the core of the candidate generation procedures in [deKleer76],
[Brown82], [Davis84], [Genesereth84], [Scarl85], [deKleer87], and [Dague87].
The details of GDE [deKleer87] will be presented shortly, since it provides
the basis for the program in this report. [Ginsberg86] and [Reiter87] provide
formal interpretations for this technique based on the notion that broken
components are abnormal and the preferred diagnoses are those requiring
the minimal abnormalities. An important advantage of this technique is
that it requires no information about how certain components might fail;
only the correct behavior needs to be known.

A second technique extends the first by taking advantage of fault models
- knowledge about how individual components fail. After finding com-
ponents whose failure could explain all discrepancies, the effects of known
failure types in those components are simulated. If the set of known failures
is treated as exhaustive, then candidates can be exonerated by fault simu-
lation. For example, suppose some wire is a candidate. Wires fail only by
breaking, so the program could simulate the effects of that wire becoming
an open circuit and check whether that is consistent with the observations.
If it is not consistent, the wire would be exonerated. This technique is used
in SOPHIE (Brown82] and several other model-based troubleshooting pro-
grams. IDS [Pan84] goes further and explicitly models component failures
in a way that allows dependent failures - failures caused by prior failures
- to be explicitly represented and diagnosed. The additional power that
fault models provide, however, comes at a high price, since it is difficult to
provide an exhaustive list of failures for anything other than the simplest of
components.

26 CHAPTER 2. BACKGROUND

The third technique generates alternative explanations for each discrep-
ancy incrementaJly, as in ABEL [Patil81]. For example, if in Figure 2.1 the
output had been observed to be 6 instead of 8 as expected, among the ini-
tial possibilities are that Adder-2 is broken, that one or both of its inputs
are lower than expected, and that one of the inputs is higher than expected
and the other lower. Some of these are inconsistent with the observations
(for example, one of its inputs is known to be 4) and are discarded; the
others survive to be further elaborated. The knowledge about the system is
the same as that available to the previous technique; the difference is that
generating candidates and using fault models to check their consistency is
interleaved. The advantage of doing so becomes evident when diagnosing a
system with feedback or with high connectivity between its components. If
only knowledge about correct behavior is used then almost any discrepancy
can be accounted for by the failure of any component [Hamscher84]. Sub-
sequent reasoning with fault models can constrain the possibilities, but it
is inefficient to go through the intermediate stage of generating all possible
candidates, and the interleaving avoids it.

The program described in this report is based on the first of the above
techniques, as implemented in GDE [deKleer87I. This approach begins with
an augmentation of behavior prediction. Each local prediction is tagged
with the set of components on whose correct behavior it depends, so that
when an observation is made that contradicts what the model predicted, the
components responsible can be easily found. Each of these predictions are
only valid if one or both adders are assumed to be working normally, and
each prediction is tagged with the minimal sets of assumptions that support
it. For example, suppose both inputs to an adder component Adder-i are 2
(Figure 2.3).

Neither input to Adder-1 requires any assumptions, so their tags are {}.
The prediction that the output X is 4 relies on the assumption that Adder-1
is working normally along with all assumptions supporting the inputs, so it
is tagged with the set {Adder-1}. Each such set of assumptions is called
an environment. The prediction that the output Y is 8 is tagged with the
environment containing the assumptions that Adder-1 and Adder-2 are both
working. Observations such as those at the inputs of Adder-1 are true in the
empty environment since they rely on no assumptions.

Recall that the behavior model need not only predict outputs frozt inputs,
but can enforce any logical relationship between the values carried by con-

2.2. THE MODEL-BASED APPROACH 27

Figure 2.3: Behavior Prediction Example

2 {}

IL 8 (Adder-I .Adder-2}

:5:;]4 {Adder-i}

nections in the device. Such predictions are tagged with sets of assumptions
just as before. For example, if one input to Adder-2 is 4, and the output is
6, then the other input is predicted to be 2 and tagged with the assumption
that Adder-2 is working (Figure 2.4). Similarly, if one input to Adder-1 is 2,
then the other input is deduced to be 0 and that prediction is tagged with
the assumptions that Adder-i and Adder-2 are working.

Figure 2.4: Reasoning from Effects to Causes

AdderI Y
0 {Addr-I .Adder-2}

Candidate generation involves detecting discrepancies and determining
which components could have been responsible. Discrepancies are inconsis-
tent predictions made under different sets of assumptions (that is, in different
environments). For example, suppose the inputs to the two-adder device were
as in the first case, but the output was observed to be 6 (Figure 2.5). Su-
perimposing the two sets of predictions, it can be seen that (among other
discrepancies) node X is predicted to be 4 if Adder-i is working, but 2 if
Adder-2 is working. The union of the environments that underly inconsistent

28 CHAPTER 2. BACKGROUND

predictions are termed conflicts, and are denoted with angle brackets (). In
this case, (Adder-i, Adder-2) is a conflict.

Figure 2.5: Discrepancies Produce Conflicts

2 {Adder-2}

A conflict is a set of assumptions that contains at least one that must be
false. In troubleshooting, the assumptions are about whether components
are working properly, so it can be thought of as a set of components that
cannot all be working properly. If one of the components in each conflict were
actually failing, it would resolve the inconsistency. The minimal set covers
of these conflicts are termed candidates, denoted with square brackets [1. By
Occam's razor only the minimal set covers (those with no subsets that are
covers) are needed; the minimal covers are the simplest explanations for the
inconsistency. Each candidate corresponds to a set of components that would
resolve all the inconsistencies if all of them were failing. For example, if there
is just one conflict (Adder-1, Adder-2) there are two singleton candidates,
denoted [Adder-I] and [Adder-2]. The covering set that includes both adders
is not a candidate, since it is not minimal.

This scheme incorporates the handling of multiple faults in a natural
way. Suppose we subsequently observe that X is 5. There would then be
two conflicts (Adder-1) and (Adder-2), and their minimal set cover would be
the candidate [Adder-I, Adder-2], meaning that both Adder-1 and Adder-2
are faulty. In general, the number of candidates can be exponential in the
number of conflicts. Consider for example 2n assumptions and n conflicts,

2.2. THE MODEL-BASED APPROACH 29

one for each pair of assumptions 2i and 2i + 1; this results in 2' candidates.
Exponential blowup is rare in practice; a more common phenomenon is that
along with a small set of single-fault candidates there will be a larger set
of multiple-fault candidates. For example, the two conflicts (A, B, C, D)
and (D, E, F, G) yield one single-fault candidate [D] and nine two-fault
candidates.

Strictly speaking, this and other model-based schemes do not do diagno-
sis. They detect differences between the device and the model and produce
candidates that indicate which components of the model could be modified
to account for the observations. To interpret these differences as indications
that certain components of the real device are broken requires that the model
has fidelity, that is, that the models of components accurately represent their
correct behavior. Because of the practical impossibility of having models that
are correct in every respect, it is important to understand how GDE degrades
in the face of failures whose effects are not properly modeled. The central
issue is which interactions between components have been modeled; failures
that result in the coupling of components through unmodeled interactions
will yield incorrect candidates.

For example, the standard model of digital circuits says that each node
is driven to 0 or 1 by just one gate. Using this model, upon finding a dis-
crepancy at a given node, only the gate driving the node and gates upstream
from it will appear in the resulting conflict (Figure 2.6).

Figure 2.6: If x is not 1, Only A Could be Broken

In reality, the gates also interact through current flow. The gate B being
driven could be failing in a way that pulls down the node x. The invert-
ers are coupled via an interaction that was not modeled, so the standard
digital model yields the wrong answer. Suppose current flow were modeled,
so that the node x is 1 only when both A and B are working (Figure 2.7).

30 CHAPTER 2. BACKGROUND

Now both inverters will show up as candidates. These candidates could be
disambiguated by observing the current flow into B.

Figure 2.7: Inverter B Could be Pulling x Down

There are even more candidates, however. For example, there could be a
short between node x and some other node (Figure 2.8). Even if modeling all
the possible shorts were practical, there are still further possible interactions
that this model leaves out.

Figure 2.8: A Short Could be Pulling x Down

1{} I

An important property of the GDE scheme for producing fault candidates
is the way it degrades in the face of failures that violate the device model by
introducing unexpected interactions, as in this last example. With enough
observations, the results will be interpreted as requiring multiple-fault ex-
planations. For example, suppose the symmetric test had been run with the
inputs to A and C swapped, and y observed to be 0 instead of 1. A new
conflict (C, D) would have been discovered, and GDE would produce four

2.2. THE MODEL-BASED APPROACH 31

candidates: [A, C], [A, D], [B, C], and [B, D). Among the candidates that
GDE produces will be multiple-fault candidates involving the components
influenced by the new connection. In fact, any failure can be interpreted as a
multiple-fault failure no matter how drastic its effects, since there is always
the degenerate candidate consisting of all the components in the device. For
example, suppose that some digital circuit model does not explicitly represent
power and ground. If power were lost then every component might appear
to be behaving incorrectly. That is exactly what the troubleshooting engine
would produce as a candidate: one in which every component is broken.

The GDE scheme for generating candidates from conflicts is simple, gen-
eral, and to the extent that the model accurately represents the structure and
behavior of the device it yields correct results. The difficulty is that since the
model can never be totally correct, only the fidelity of the underlying model
gives license to interpret a candidate such as [A, B] as meaning that both
A and B are broken. One way of dealing with this problem is illustrated by
HT [Davis84], in which discrepancies that can only be explained by multiple
fault candidates are checked to see whether they could be explained as sin-
gle faults in alternative models of the circuit. One such alternative model
makes the physical proximity of wires explicit, to detect shorts like that in
Figure 2.8.

Another difficulty is one shared by any troubleshooting program, namely,
the available observations of the device might be too crude to detect discrep-
ancies. For example, suppose a behavior model predicts a particular sequence
of zeroes and ones will appear on a wire, but an oscilloscope can only de-
termine whether the signal is active or not. Legitimate discrepancies and
conflicts may well go undiscovered, and hence some inconsistent candidates
may survive.

2.2.4 Discrimination

As diagnosis proceeds there are usually several candidates that could ex-
plain all the discrepancies. To discriminate between these candidates requires
gathering more information in the form of eith,-: (i) new observations of the
device in its current state, or (ii) observations of its response to some new
test stimuli. Since there are typically many observations and tests that could
be performed, the program needs to choose which of them to do next. This
choice can be formulated in terms of the cost of each action, the benefits

1+

32 CHAPTER 2. BACKGROUND

of their various outcomes, and the likelihoods of those outcomes. Using the
entropy of the distribution of candidates as a "benefit" metric, choosing the
observation yielding the minimum expected entropy as in [Gorry73] can be
used in the model-based approach just as in the symptom-based approach.
In GDE the device model is used to derive the expected outcomes of each
possible observation along with their likelihoods; the details will be discussed
shortly. A similar framework is used in IN-ATE [Cantone83] to estimate the
likelihoods of various circuit test outcomes.

Recall that in GDE each candidate is a set of assumptions that would
resolve all conflicts if they were all false. GDE assigns a weight to each can-
didate by treating each assumption as independent and assigning to each a
prior probability near 1.0 of being true. The probability of a candidate is
then the probability that all the assumptions it includes are false and all
other assumptions are true. The weight of each candidate is its probability
normalized with respect to all candidates. Continuing the two-adder exam-
ple, let the initial probability of each adder working be p(Adder) = .99. The
weight of each is .50, computed as shown:

Candidate Probability Weight
[Adder-i] (1 - p(Adder-1)) x p(Adder-2) = .0099 .50
[Adder-2] p(Adder-1) x (1 - p(Adder-2)) = .0099 .50

Suppose there had been three adders A, B, and C with p(A) = p(B) =
p(C) = .99, and that there were two conflicts (A, B) and (B, C). There would
be two candidates [B] and [A, C] whose rankings would be as shown below".
This yields the intuitively satisfying result that the single-fault candidate [B]
is much more likely than the multiple-fault candidate [A, C]:

Candidate Probability Weight
[B] p(A) x (1 - p(B)) x p(C) = .0098 .99
[A,C] (1 - p(A)) x p(B) x (1 - p(C)) = .000099 .01

There will nearly always be several competing candidates. To discrimi-
nate among them, GDE considers all the possible observations that could be

'The normalization is a heurstic step that ignores non-minimal candidates. Both A
and B could be broken, all three could be broken, and so forth. The residual probability
is distributed among these other non-minimal candidates.

LI

2.2. THE MODEL-BASED APPROACH 33

made next, and by a one-level loolkahead picks the observation that is ex-
pected to yield the most information. The probability of each outcome of a
possible observation is estimated as the combined weight of those candidates
with which the outcome would be consistent.

In the two-adder example, according to the predictions an observation at
X has two outcomes; either it is 4 (if Adder-1 is working), or it is 2 (if Adder-2
is working). An outcome of 2 is consistent with the candidate [Adder-i],
and 4 is consistent with the candidate [Adder-2]. Each candidate weight
is .5 so the probability of each outcome is estimated as .5 as well. The
expected information gain from making a given observation can be estimated
as the negative of the entropy in that distribution of outcomes (the sum
of pi log2(pi) over the outcomes i). The observation that maximizes the
additional information is selected. In the two-adder example the computation
is trivial. The entropy is .5 log(.5) + .5 1og 2(.5) = -1.0 and the information
is -(-1.0) = 1.0. A probe anywhere already observed yields information of
0 and X is the only signal not observed, so probing X is obviously the right
choice. In less trivial examples this technique tends to choose observations
that, roughly speaking, divide the space of outstanding candidate weights in
half.

Relying on a fixed set of observations or tests is not always practical,
however. In domains such as digital circuit diagnosis it can be more effective
to design a test specifically to help discriminate between candidates. This
approach is taken by DART [Genesereth84], which repeatedly generates tests
(using an implementation of path sensitization [Roth67)) until it finds one
that will yield distinguishable outcomes given different candidates. Such tests
can be generated more effectively if information about candidates is used
while creating the test [Shirley83]. The program discussed in this report
selects observations based on the scheme in GDE, but neither selects nor
generates tests.

2.2.5 Hierarchic Diagnosis

Hierarchic diagnosis is usually viewed in terms of recursive descent. The
troubleshooting program first isolates the fault to a component at a certain
level of detail, then proceeds to diagnose the failure within its substructure,
until a primitive level of detail is reached. Each level of structural detail
usually has associated with it a level of behavioral detail as well. Nearly

34 CHAPTER 2. BACKGROUND

all model-based troubleshooting programs incorporate hierarchic diagnosis
controlled in this way.

The GDE scheme can be extended to do hierarchic diagnosis. For exam-
ple, suppose in the two-adder example that X is observed to be 2, so that
(Adder-1) is the only conflict and hence [Adder-i] the only candidate. If the

adders are not primitive components, but rather have the substructure of
four-bit ripple-carry adders (Figure 2.9), then troubleshooting can continue
at the structural level of full adder slices and behavioral level of bits. Each of
the adder slices has a "sum" bit output and a "carry" bit output that feeds
into the next slice.

Figure 2.9: Diagnosis of Adder-i

o {} S3 o{
2 {} o--}

o 0
o (}

2 0

1 s{}

20-4

0 o 0so

o 0
o0

The model predicts that if SO is working its carry output will be 0. The
sum output of Si is predicted to be 0 if both SO and S1 are working. The

2.2. THE MODEL-BASED APPROACH 35

carry output of Si will be I no matter what the carry-in from SO was, since
two of its inputs are I already. The sum output of S2 will be 0 if both SI
and S2 are working. The observation that the adder output is 2 corresponds
to observations that the sum outputs of SO through 53 are 0, 1, 0, and 0
respectively. These observations are inconsistent with the outputs at S1 and
S2, producing two conflicts (SO, S) and (S1, S2). These two conflicts yield
the single-fault candidate [S] and the two-fault candidate [SO,S2].

Note that hierarchic diagnosis can also be worthwhile even when the
fault has not been fully isolated (technically, isolation would mean that the
assumption that the component is working is a singleton conflict). In the
two-adder example, suppose that X has not yet been observed, so that both
[Adder-I] and [Adder-2] are candidates. Both adders are descended into,
revealing slices SO through S3 in Adder-1 and S4 through S7 in Adder-2. Some
of the newly discovered conflicts are shown in Figure 2.10: (SI, 52, 53, 6, S7),
(SO, 51, S2, SS), (S1, S2, 54, 55), and (SO, S1, S4, S5).

From these conflicts all of the subcomponents of Adder-2 can be ruled out
as single-fault candidates, without requiring any more observations. In fact
there is only one singleton candidate: [Si]. The other minimal candidates are
[SO, S2], [S2, S5], [S2, S4], [S3, S5], [S5, S6], [S5, S7], [50, S4, 57], [SO, S4, 56],
and [SO, S3, S4].

Most discussions of hierarchic diagnosis in model-based troubleshooting
programs present a simplified picture in terms of isolation to a single com-
ponent followed by recursive descent. As this example suggests, effective
diagnosis of more complex systems is likely to require considering multiple
levels of detail even when there are several candidates, as done in ABEL
[Patil8l] and in the program discussed in this report.

2.2.6 Summary of the Model-Based Approach

Although differing in implementation technology, all model-based trou-
bleshooting programs share the same underlying organization. A device
model produces predictions about behavior and about what ought to be
observed. A separate troubleshooting engine then produces alternative diag-
noses that each resolve all discrepancies between the model and the actual
observations.

The notion of a "device model" is that of a lumped-element description
consisting of components and connections. In committing to any such repre-

4A!

36 CHAPTER 2. BACKGROUND

Figure 2.10: Diagnosis of Adder Substructures

0-S3 0 (82.3)sS

o~ ~ 0}1{ 2 1 (S S2.SS

0 {81.S2.S2.SS.)

o 16

o {0 O0.81}4o o{}4o0

o{ I

0 (S)0}4

000

o so 0(O)S
0 0

So0 o 0

sentation the program sacrifices some degree of coverage, since there will be
failures that it will misdiagnose.

Behavior prediction in such a model can (for the most part) be done by
local propagation, that is, each prediction is made on the basis of information
local to a single component. The choice of level of detail to represent behavior
and of the machinery that manipulates it both inevitably sacrifice precision
and completeness of predictions for the sake of efficiency. In troubleshooting,
the effect is to sacrifice some degree of resolution since there will be some
failures that cannot be distinguished.

In the GDE framework, each prediction is tagged with its set of supporting
environments - sets of assumptions about which components are working.
Discrepancies result in conflicts - sets of assumptions that contain at least

2.2. THE MODEL-BASED APPROACH 37

one false assumption. Each covering set of these conflicts is a possible diag-
nosis; by Occam's razor the minimal covers are selected as candidates. One of
the important properties of the scheme is that when faced with a failure that
cannot be represented in the model, it proposes multiple-fault candidates
rather than (say) declaring an irreconcilable inconsistency.

There are nearly always several different candidates. Candidates are dis-
criminated by assigning each a weight based on its normalized prior prob-
ability, and if there is no clealy dominant candidate, an observation with
the minimum entropy is selected. When further conflicts result from the
observation, some candidates are ruled out and others become more likely.

Finally, having isolated a fault to a single component, hierarchic diagnosis
proceeds by descending into substructure of the component, if any. The
additional information available at lower levels of detail may also be useful
for discriminating candidates even if the fault has not been uniquely isolated,
as illustrated above.

Chapter 3

Troubleshooting Scenarios

This work makes several claims about representing digital circuits for model
based troubleshooting. The support for these claims comes largely from a
set of implemented examples of circuit structure and behavior, and from the
fact that the troubleshooting engine can successfully diagnose faults using
those models. The scenarios have been collected into this early chapter to
provide context and motivation for subsequent discussions of the structure
and behavior of these circuits. Indeed, a central theme of this work is that
the intended use of a model impacts what gets mentioned in the model; this
chapter shows the reader that intended use.

The program that does these examples is organized into several snbsys-
tems (Figure 3.1). There is a domain independent troubleshooting engine
XDE that extends the GDE approach so as to use hierarchic diagnosis and
fault models. The physical and functional organization of the circuits to be
diagnosed are represented in a language called BASIL. The behavior of the
components in those circuits are represented in a temporal constraint propa-
gation language TINT. All of these are built using JOSHUA [Rowley87], which
provides implementations of data storage and retrieval along with forward
and backward chaining rules. BAR-JOSEPH embodies the author's exten-
sions to JOSHUA, including a simple inheritance facility and an assumption-
based truth maintenance system based on boolean constraint propagation
[McAllester80b] [deKleer86a]. Chapters 4 through 7 discuss XDE, BASIL,
and TINT; the underlying JOSHUA and BAR-JOSEPH implementations are
not discussed in detail.

The troubleshooting examples are all taken from the Console Controller

38

39

Figure 3.1: Overall Troubleshooting Program Organization

XDE BASIL TINT
Troubleshooting Circuit Structure Circuit Behavior

BAR-JOSEPH

Truth Maintenance

I
JOSHUA

Rule Language

Board of the Symbolics 3600 series console. The board has approximately
50 chips and 300 visible circuit nodes; the largest example currently handled
involves 20 chips and 100 visible nodes. In the descriptions of structure and
behavior, the following conventions are adhered to:

* U25 is a typical chip name. RN7 is a typical name for a nine-resistor
network that is treated just like a chip.

o n178 is a typical name for a circuit node, or, to be precise, for a wire
etch as represented by the programs.

* FDO1 is a typical name for a component such as a Frequency Divider.
One-of-a-kind components are usually given one or two letter names
such as U (a microprocessor) or R (the Reset Hold Counter).

* U30a and U30b are typical names for the flipflops that reside on chip
U30. In general the a, b, c suffixes denote functional units within a
chip.

The figures that show the physical and functional organization of circuits
obey the following conventions:

40 CHAPTER 3. TROUBLESHOOTING SCENARIOS

" A box with thin lines indicates the boundaries of a physical component,
usually a chip.

" A box with thick lines indicates a functional component such as a flip-
flop, which may have a complex correspondence to a physical compo-
nent.

e Where a box name such as U is not sufficiently informative, the type
of the box is shown in a slanted font as Input Processor.

" Thick lines with arrowheads indicate connections between components;
technically they are "signals" as defined in Chapter 5.

The examples summarize the output transcripts found in Appendix A.1
through Appendix A.11:

" One example involving three chips in the section of the board respon-
sible for generating clocks at various frequencies.

" Four examples involving ten chips in the Audio Decoder section, re-
sponsible for translating an asynchronous digital audio signal from the
host into a signal that drives a speaker.

" Two examples involving twenty chips in the Input Encoder section,
responsible for transmitting keystrokes and mouse motions to the host.

3.1 Clock Generator Examples

The Clock Generator circuit shown in Figure 3.2 and Figure 3.3 is respon-
sible for generating 10 Mhz, 5 Mhz, and 2.5 Mhz clock signals that will
be distributed throughout the board. It is a trivial circuit, of course, but
nevertheless raises important issues.

The generator consists of a crystal oscillator OSC that produces a 10 Mhz
TTL clock. The inverter in this circuit is acting as a buffer (FB01); the
frequency of its output is the same as its input. Two separate frequency
dividers FDO1 and FD02 are implemented with the dual flipflops on chip
U30; if all the components {U25,U32,U30} are working then the output at
n158 is a 5 Mhz clock and the output at n167 is 2.5 Mhz.

3.1. CLOCK GENERATOR EXAMPLES 41

Figure 3.2: Clock Generator Schematic

3.1.. Tu ht .C G ene

Cytloclao ue of thr inera Structure
OSC~ A N2 B1 OlFD2n6

pakgd ed filmoufeqentl tha othrmpoents.vie-c 25i

more Uieyt eboe h132 orU3.0 rbea 2 a bemdet

confirm Ts. Clock Generator

AUme t32e 0n tn is or to A reqency 10 M, a wo

3.. onimrulsotn this Clc Gnrao

Assume t sg167 n9 is observed to b"fat ha veit frequency is zero Ths yield

(U5U2U0 sacnlc n ec [2] U5,ad[2]a addts

Cryta osiltrbcueo hi nenlsrcueadtewyte r

42 CHAPTER 3. TROUBLESHOOTING SCENARIOS

be expected if the oscilltor were behaving normally. Oscillators also fai in

a characteristic fashion: they produce a #at output rather than the desired

periodic waveform. Hence the oscillator becomes a much less likely suspect,
though still logically possible since the exact shape of every pulse cannot be
examined.

This leaves U30 and U32 as the main suspects and node n205 as the next
good place to probe, because that would tell which chip needs replacing.
If that signal is probed and observed to be flat (zero frequency) it is rela-

tively certain that U32 is broken, since otherwise the signal would have had
frequency 10 Mhz.

3.1.2 Morals of the Clock Generator Example
Simple as it is, the Clock Generator example illustrates three key ideas:

Temporally coarse behavior models can be adequate for troubleshooting.
Although the Clock Generator is a digital circuit, the traditional model of
digital behavior that involves individual clock cycles, rising and falling edges,
and so forth, was inappropriate for this troubleshooting example. A much
simpler, temporally coarse description of its behavior involving the notion of
"frequency" provided just as much ability to localize the fault. The detailed
model would have uselessly predicted many events individually undetectable
using an observation technology as simple as an oscilloscope. That abstrac-
tions simplify reasoning is obvious, what is important is that in this case
the nature of the abstraction was explicitly temporal and made traditional
simulation unnecessary.

The representation of physical organization is essential for troubleshoot-
ing. Failures and repairs occur in physical devices, not in the functional
organization that we attribute to them, hence the physical organization of
the device needs to be represented explicitly. The value of representing the
physical organization has previously been associated with the diagnosis of
unusual faults such as solder bridges [Davis84]; in fact the model should Il-
ways include the physical information, for the more mundane reason that
it can save the troubleshooter from spending effort on distinguishing faults
that share the same repair. In this example, there was no need to distinguish
which of two flipflops might have been broken, since the repair in both cases
was identical: replace chip U30.

0~

3.2. AUDIO DECODER EXAMPLES 43

Fault models are useful heuristics. There was added focusing power avail-
able from heuristic knowledge about relative failure rates of components and
likely misbehaviors. In this example, without knowing that oscillators com-
monly fail in a particular way, the observation that the oscillator output had
frequency 10 Mhz would have told us nothing at all about the oscillator. This
kind of knowledge can only be used to discount possible diagnoses, never to
support them directly. The added knowledge discounts the possibility that
the oscillator was broken and hence promotes the more likely diagnoses. Con-
versely, had n291 been flat instead of 10 Mhz, the conflict (U25) would have
resulted and the oscillator been identified as faulty after only one probe.

3.2 Audio Decoder Examples

The Audio Decoder is responsible for converting an asynchronous serially
encoded 12-bit digital signal into a voltage in the range +15 to -15 volts. It
involves ten chips and fifty visible circuit nodes (Figure 3.4). The simplifica-
tions made for presentation are that explicit information about wire etches,
and an alternate signal path into the analog-to-digital converter, have been
omitted.

The four troubleshooting examples illustrate t e following ideas:
The behavior of components should be represented in terms of feature. that

are easy for the troubleshooter to observe. The vocabulary of observations
that the troubleshooter can make provides a vocabulary that can be used
in modeling the behavior of the device. For example, if one assumes that
only certain features of a signal can be observed using an oscilloscope, then
that set of features defines one level of abstraction at which to model the
behavior of the device and its components. This model may not provide
sufficient resolution, so a more detailed model may be needed as well; the
point is that the vocabulary of observations provides guidance as to what
abstractions may be useful.

Components in the representation of the functional organization of the
circuit should facilitate behavioral abstraction.. Representing the organiza-
tion of a device hierarchically has advantages noted earlier. Hierarchic or-
ganization by itself, however, provides no leverage on the fundamental goal
of troubleshooting - to discriminate between candidates - unless there is
a behavioral characterization of each component that would be difficult or

44 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Figure 3.4: Audio Decoder Schematic

- ca

No'

'a-'a

expensive to derive from its subcomponents.

3.2.1 Functional Organization of the Audio Decoder

Figure 3.5 shows the three stages of the Audio Decoder: a clock is extracted
from the incoming asynchronous manchester signal by MTS01; the resulting
clocked serial signal is converted into a 12-bit parallel signal with a write
strobe by STP01; and the parallel signal is then converted to a voltage by the
digital-to-analog converter PTAO1. STPO1, which converts from synchronous
serial to parallel data, has three components: CSA01 accumulates the data
bits in two shift registers, while a pair of counters in CSB01 count the number

3.2. AUDIO DECODER EXAMPLES 45

of bits since the first arrived. When all the bits have arrived CSBO1 asserts
n290 to latch the parallel data into the digital-to-analog converter. BUF01
buffers the serial clock n34 extracted from the incoming signal and strobes
MTS01 using n232.

Most of these functional components can be viewed as simply converting
information from one encoding to another. In particular, the signals denoted
ser0l and parOl both carry streams of 12-bit digital values; only their under-
lying encoding is different. Hence, MTS01, STP01 and PTA01 are modeled
abstractly as buffers. The burst detector CSB01 converts incoming 12-bit
bytes into single pulses on its output. The "clocked serial accumulators"
(CSA01, CSA02, CSA03) are shift registers that accumulate the incoming se-
rial data bits in each burst. The individual data values are not represented
explicitly. Rather there are abstract signals which, although in principle
could be computed at every point in time, in fact are only observed and
reasoned about in terms of features such as their amplitudes and rates of
change.

Each of the signals shown is described using features that an oscilloscope
can easily detect. An oscilloscope can be used to measure the frequencies
and periods of signals. For nonperiodic signals, this can only be done qual-
itatively: a signal which is neither constantly high nor constantly low has
some unspecified positive frequency, and is characterized as "changing." For
periodic signals, certain shape properties can be observed: in particular, the
difference between the maximum and minimum value, the period of cross-
ings of its midpoint value, and the frequency of crossings of zero in the first
derivative (that is, changes of direction). In these troubleshooting examples
the Audio Decoder is presented with a 1 Khz sinusoidal signal". The sam-
pling rate is forty per period, that is, a new 12-bit quantity arrives every 25
psec. The resulting digitally-encoded sinusoid is shown at the top of Fig-
ure 3.6. If this sinusoidal signal has higher order harmonic components, it is
simply characterized as having a higher frequency in the first derivative than - -

in the signal itself. The bottom of Figure 3.6 shows an example, a distorted
sinusoidal voltage signal in which the frequency of sign changes in the first
derivative is higher than the frequency of sign changes in the voltage.

'It is assumed that the 1Khs signal is the only test input available. It turns out, in
fact, that other test inputs would not provide appreciably more diagnostic resolution given
the observability constraints already assumed, so that in itself is not a major handicap.

40 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Figure 3.5: Audio Decoder Functional Organization

ST P01 serial to Parallel

CSA01 Clocked Serial
Accumulator

CSA02

MTS01
PTAO1

toSerial
Prle

to
paAnalog n272

hi2

LoCSBO1 BuntDetector n9

3.2. AUDIO DECODER EXAMPLES 47

Figure 3.6: Signal with Too Many Zero Crossings in its First Derivative

2l +15

2111 0

0 -15

212-1 +15

211 1 0

00
o -15

The limited ability of the oscilloscope to characterize the voltage output
of the Audio Decoder means that the signal parOl need only be character-
ized in the vocabulary of the oscilloscope. Only the frequency of the signal,
crossings of its midpoint value, and zero crossings in the first derivative,
need be mentioned. Since the information carried by parOl is encoded as a
twelve-bit digital signal and cannot be directly observed, it is necessary to
characterize the relationship between parO1 and the underlying signals that
can be observed, namely the individual data bits and write strobes. To take
two representative examples of this relationship: if the signal parOl crosses
its midpoint value with a frequency of n, then the most significant data bit
has frequency of at least n because it has to change its value at least as often
as parOl does; similarly, if the write strobe signal is always high, then the
signal parOl never changes, so that its frequency is zero and the difference
between its maximum and minimum is zero.

The accumulators CSA01, CSA02, and CSA03 all act as delay elements:
each incoming data bit appears some time later at each of the output bits
of the shift registers. Hence given sufficiently many bytes transmitted, the
frequency of each individual bit of the output signal should be the same as

48 CHAPTER 3. TROUBLESHOOTING SCENARIOS

that of the incoming serial data measured with respect to the serial clock. To
see why this is so, consider an 8-bit shift register that has an incoming signal
clocked into its most significant bit. Suppose that input signal goes from 0
to I and back 1000 times during a certain time interval. The most significant
output bit will change either 999 or 1000 times, the next-to-most significant
output bit will change between 998 and 1000, and so forth. For a sufficiently
large number of these cycles, the number of changes over that time interval
are essentially equivalent, hence their frequencies are equivalent. This is an
example of representing the behavior of components in terms of features that
are easy for the troubleshooter to observe, in this case, in terms of whether
or not the signals are changing.

The subcomponents CSA02 and CSA03 of CSA01 are almost identical to
CSA01, except that CSA02 corresponds to chip U21, which holds the 7 most
significant bits, and CSA03 to U44, which holds the 5 least significant.

The burst detector CS801 is responsible for generating the strobe signal
that latches data into the digital-to-analog converter. The clocked-serial
input can be characterized as a sequence of bursts of activity interspersed
with periods of quiescence. Internally CSB01 is a counter that is reset at
the beginning of each burst and counts up the number of clock cycles that
are seen, finally asserting its output briefly when all twelve data bits have
been accumulated by CSA01. This output is then used as a strobe for the
parallel data. Thus, given a sequence of incoming data words, CSB01 asserts
its output once per word. The behavior of CSB01 is described in terms of
frequencies; the output frequency is positive only when the input frequency
is positive.

CSB01 is a good example of how explicit knowledge about functional
organization simplifies troubleshooting. Simulating the behaviors of the in-
dividual components - the two counters, the gates, and the pullup resistors
- would be relatively tedious. Encapsulating them along with the feedback
signal yields an aggregate behavior that is almost as easy to describe and
simulate as that of just one counter. Furthermore, it lends itself to descrip-
tion in terms of frequencies and rates of change, features that are easier to
observe than the individual counting steps.

3.2. AUDIO DECODER EXAMPLES 49

3.2.2 Physical Organization of the Audio Decoder

The Audio Decoder is implemented using nine chips and a nine-resistor net-
work that is treated by the program as an ordinary chip. The correspondence
between the functional components and the physical chips is shown in Fig-
ure 3.7. The serial ser0l signal is carried by a clock and a data signal (n56
and n260, respectively). The parallel signal parOl corresponds to two control
signals n290 and n232 and twelve bits of data, named (from most to least
significant) n48, n289, n246, n88, n208, n139, n131, n112, n194, n159, n117
and n236.

The likelihood of failure for each chip is estimated from its physical com-
plexity as measured by the count of pins. The probability that chip is normal
is simply the probability that all its pins are normal. Wires are assumed not
to fail.

There are 130 pins in the audio circuit; in principle the program can
suggest probing any of them. However, since etches are assumed not to fail,
there is no need to probe more than one pin attached to any given etch,
nor is there any need to probe pins that are attached directly to power or
ground. Hence in this example there are only 23 distinguishable probes that
XDE will ever suggest.

3.2.3 Audio Decoder Example I

Suppose that the output of PTA01 is observed to be flat, that is, zero fre-
quency and amplitude. Any of the ten chips could be responsible, so there
are ten singleton candidates, one corresponding to each chip. The candidate
[U43] (the digital-to-analog converter) is judged to be somewhat likelier than
the others.

The model makes predictions about which of the signals in the circuit
should have a constant I value (n140, for example), which should have a
constant 0 value (n34, for example, which is 0 except during certain local
keyboard operations), and which should be changing. The program suggests
a number of signals that could be examined, shown below:

50 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Figure 3.7: Audio Decoder Physical Organization

CSA02 n48
n289
n246
n88
n208

MTSO1 n139
n131 PTAO1

n1272

RN6 19

3.2. AUDIO DECODER EXAMPLES 51

Place Expected Entropy Supporting Environments
n290 changing .83 {RN6,U12,U10,U11,U20}
n280 changing .76 {RN6,U12,U1O,U20}
n112 changing .73 {RN6,U12,U21,U44}
n88 changing .60 {RN6,U12,U21}

The highest ranked probe is of n290, one of the write strobes to PTA01.
This makes sense, since if this signal were dead it would explain why the out-
put was fiat and would tend to exonerate the shift registers that accumulate
the incoming data bits. Suppose n290 is observed to be a constant 1 instead
of changing as expected. Since it was supposed to be changing as long as
the components {RN6, U12, U10, U11, U20} are all working properly, (RN6,
U12, U10, Ull, U20) is a conflict. There are now five candidates, one corre-
sponding to each chip. [U12] is slightly likelier than the other candidates.

Now a different group of probes are ranked the highest. All of the signals
on the data bus are equally good; if both of the candidates [RN6] and [U121
are working then these signals should be changing:

Place Expected Entropy Supporting Environments
n88 changing .72 {RN6,U12,U21}
n112 changing .72 {RN6,U12,U21,U44}
n48 changing .72 {RN6,U12,U21}
n159 changing .72 {RN6,U12,U21,U44}

Suppose the data bit n88 is observed to have the constant value I instead
of changing. Now (RN6,U12,U21) is a new conflict. There are two singleton
candidates, [RN6] and [U12], and three two-component candidates: [U10,
U211, [U11, U21] and [U20, U21]. The singleton candidates are judged to
be the most likely, and U12 more likely to fail than RN6. The probes given
the highest ranking are those of signals that are expected to be changing
independently of whether RN6 is working or not, namely n56 and n232:

Place Expected Entropy Supporting Environments
n56 changing .92 {U12}
n232 changing .92 {U12,U22}

52 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Signal n56 is observed to have the constant value 1, so (U12) is a conflict
and hence U12 is the only singleton candidate.

The troubleshooting program performs well on this example; only three
probes in addition to the initial symptom were needed to yield a single
candidate with much higher probability than the others (transcript in Ap-
pendix A.2). More important, it was able to do so using only temporally
coarse predictions about the signals in the circuit, predictions in terms that
corresponded directly to probes that the troubleshooter could make easily.

3.2.4 Audio Decoder Example II

Troubleshooting a second example with the same initial symptoms but a dif-
ferent underlying fault yields poorer performance. By including information
about the way components are expected to fail, however, its performance
improves dramatically (transcripts in Appendices A.4 and A.5).

Initially the output is observed to be fiat and instead of changing as
expected, n290 is observed to be constant 1. As before, the five most likely
candidates are [RN6], [U12], [U10], [U11), and [U20]. This time, however,
n88 is observed to be changing, as would be expected if everything were
normal. Given no change in the set of candidates, probes of other data bus
bits still appear to be the most informative probes; for example, the next set
of suggestions is shown below:

Place Expected Entropy Supporting Environments
n236 changing .72 {RN6,U12,U21,U44}
n208 changing .72 {RN6,U12,U21}
n117 changing .72 {RN6,U12,U21,U44}
n289 changing .72 {RN6,U12,U21}

The next six probes similarly yield no new conflicts and do not change
the set of candidates. Finally, the program suggests probing signal n213, the
signal that was immediately upstream of the discrepancy observed at n290.
If U20 is working properly, then it should be a constant 0. It is observed to
be changing, hence (1320) is a conflict and [U20] the single highest ranked
candidate.

The difficulty is that the program just did eight probes, six of which were
useless. The fact that even one of the bits of the data bus was changing

3.2. AUDIO DECODER EXAMPLES 53

should have indicated that the problem was unlikely to be in U12 or RN6.
This is because if either of those components were broken the entire bus
would probably be inactive. Hence, the more informative probes would have
been in the vicinity of CSB01.

Including fault models for the components in MTS01 and CSB01 changes
the efficiency of the troubleshooter dramatically. Now, instead of suggest-
ing probes of the data bus bits, the higher ranked probes are those around
CSB01, the component responsible for producing the discrepant signal n290.
In particular, n213 is now among the highest ranked probes:

Place Expected Entropy Supporting Environments

n213 changing 1.0 {RN6,U10,U11,,U12,U20}
0 {U20}

n56 changing 1.0 {U12}
n159 changing 0.79 {RN6,U12,U21,U44}
n289 changing 0.79 {RN6,U12,U21}

When n213 is observed to be changing, the (U20) is a conflict and so
[U20] becomes the single likeliest candidate. Instead of making eight probes,
this time the program only makes two. Furthermore, using fault models as
heuristics does not decrease the performance of the other troubleshooting
examples. The other scenarios shown require the same number of probes
with or without fault models.

3.2.5 Audio Decoder Example III

Suppose that instead of the output being simply fiat, its amplitude and fre-
quency are correct, but it is distorted as was shown earlier in Figure 3.6
(Page 47). Using only temporally coarse descriptions of signals, the trou-
bleshooting program is able to isolate the responsible component using six-
teen probes.

The initial symptom is that the frequency of zero crossings in the first
derivative of the output signal is higher than expected. All components are
singleton candidates, and as in previous examples the first probe is at the
write strobe signal n290. This signal is expected to be changing, and it is.
The next two probes are at internal signals of CSB01, and appear to be
changing as expected.

54 CHAPTER 3. TROUBLESHOOTING SCENARIOS

All but one of the next eleven probes are of the data bus bits, which are
all expected to be changing. The temporally coarse behavior model does not
include enough detail to indicate which of the bits ought to be probed first;
any of the twelve bits having the wrong value at the moment they are latched
into PTAO1 could result in a distortion similar to that described. Eventually
the signal n246 is discovered to be stuck at 1, yielding the conflict (RN6,U21)
and hence the likeliest candidates as [U21] and [RN6]. After two more probes
the conflict (U21) is discovered and the candidate [U211 is left as the final
diagnosis (transcript in Appendix A.7).

What is interesting about the performance of the troubleshooting pro-
gram using the temporally coarse model is not the probes it did, but the
probes it did not do. The serial signals n56 and n260, for example, were not
probed, and this makes sense: if there were faults there or upstream of there,
the effects would probably have been more drastic than mere distortion of
the output. Sixteen probes may seem like a lot, but it would require a consid-
erably more temporally detailed (and expensive) model to do much better.
To determine without probing exactly which data bus bits were wrong, for
example, would have required being able to observe the shape of the output
to twelve bits of precision and at just those moments when the write strobe
signals were asserted. While this is not impossible, human troubleshooters
rarely go to that kind of trouble, preferring instead to do a few more simple
probes.

3.2.6 Audio Decoder Example IV
Like any abstraction, temporally coarse behavior models discard information.
The final Audio Decoder troubleshooting example is similar to the previous
example, illustrating that temporally coarse models discard information that
could potentially have been used to improve the choice of probes.

The initial symptom is that the amplitude of the audio output signal is
correct, but the frequency of its zero crossings is much higher than expected.
Figure 3.8 shows the expected signal and that observed.

The initial probe of the write strobe n290 reveals that the signal is chang-
ing, just as expected. The subsequent probe of n280, a signal inside CSB01,
however, reveals that it is a constant I instead of changing, as expected. This
produces the conflict (RN6, U12, U22, U10, Ull), and those five components
are the top candidates.

3.2. AUDIO DECODER EXAMPLES 55

Figure 3.8: Signal with Too Many Zero Crossings

21-i +15

2111 0

0 -15

21 . f +15

211w 0 q

0 -15

The observation that n280 is I triggers some new predictions (dashed
arrow in Figure 3.9). n280 is the carry-out signal of the four-bit counter U 11.
Since that output is 0 whenever the Load control input to the counter is 0,
the model concludes that if the counter is working normally, then the load
control input n101 must have been a constant 1.

After seven probes elsewhere in the circuit, the program suggests probing
n101. It is observed to be changing, hence the counter U 11 cannot be working
normally. Hence (U11) is a singleton conflict and [U11] is the single highest
ranked candidate.

The program reached a diagnosis with eleven probes. As in the previ-
ous example, this may seem like a lot, but it would require a much more
temporally detailed model to do better. For example, one of these probes
is of the data bus signal n289, which was predicted to be changing. But
there is no distortion of the data signals that could account for the observed
distortion: the basic problem is that the rate at which the output signal is
changing is higher than expected - the data values are getting strobed too
fast. This can only be caused by a clock running too fast or some defect
in the burst detection counters. In fact that is just what is happening: the

56 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Figure 3.9: Internal Structure of CSB01

n101

counter

u1o
In280

Carry -

Load

U20 Counter

n1291 U1

carry-out of the low order counter bits is stuck, so C$B01 asserts its output

twice as fast as expected. Half of these times the data is correct (which
is why the output is still recognizably sinusoidal) but the other times it is
just transient garbage from the accumulator CSA01. Probes of the data bus
signals in this example are not as likely to be informative as probes in the
circuitry responsible for generating the write strobes. Any such inferences,
however, depend upon being able to observe and reason about the details of
the output waveform and the moment-to-moment activity of the clock and
data signals, which would be sufficiently expensive that a few extra probes
are an acceptable alternative.

3.3. INPUT ENCODER EXAMPLES 57

3.2.7 Summary of the Audio Decoder Examples

The Audio Decoder circuit used in these troubleshooting examples illustrates
the effectiveness and limitations of temporally abstract models of circuit be-
havior. The functional organization used in the model explicitly represents
relationships between the rates of change on the inputs and outputs of com-
ponents. These signal features are easy for the troubleshooter to observe,
and so define an appropriate vocabulary with which to describe their be-
havior. These temporally coarse behavior descriptions are associated with
the functional organization of the circuit. For example, the three chips U10,
Uii, and U22 not only have their own behavior descriptions, but there is a
temporally coarse description of CS801, the composition of all three. The
temporally coarse descriptions are adequate for troubleshooting many of the
possible failures, although there are cases for which a more temporally de-
tailed model would provide the same diagnoses wit- fewer probes, and others
for which the temporally coarse observations and models cannot provide a
unique diagnosis no matter how many probes are done.

3.3 Input Encoder Examples

The purpose of the Console Controller Board is to transmit keystrokes -

both up- and down- transitions - and mouse activity to the 3600 host com-
puter. In addition, certain keystroke sequences starting with a down tran-
sition on the "local" key cause changes in local display parameters, such as
the brightness of the screen. The section of the board responsible for these
activities is the Input Encoder. In the following sections the structure and
behavior of the Input Encoder will be presented in more detail than the
simplified view given in the Chapter 1. The troubleshooting examples that
involve it illustrate how temporal abstractions drastically simplify reasoning
about devices with sequential feedback and internal state, so much so that
model-based troubleshooting can apply to board-scale digital circuits.

3.3.1 Functional Organization of the Input Encoder

The Input Encoder merges three streams of data from the console peripherals
and encodes them in packets to be sent the host (Figure 3.10). The three
information streams are:

58 CHAPTER 3. TROUBLESHOOTING SCENARIOS

* Each up- and down-transition on the keys of the main keyboard is
encoded as a single packet.

* An auxiliary numeric keypad with fewer keys than the main keyboard
can be attached that produces up- and down-transitions, also encoded
as single packets.

* Each change of mouse position or position of its three buttons causes
a packet to be sent to the host.

Figure 3.10: Input Encoder Functional Organization

FD0 F03 Reset U3d ll2

FD03 Hold

c~mhz ¢mhzh . .mhzl

n45
E Serial

to
Host

Keyboard

Keypad , -u packets

Mouse Prcesso Controller

3.3. INPUT ENCODER EXAMPLES 59

Transmission of packets is accomplished by the Input Processor (denoted
U in Figure 3.10), which polls the keyboard, keypad, and mouse, asserting its
interrupt line (int) whenever a key transition or mouse motion has occurred.
When the int signal is asserted, the Console Controller C will respond by
asserting the read signal RD a few instructions later. If the interrupt response
time from the Console Controller is small enough (a few microseconds), a
packet is correctly transmitted from U to C.

The Console Controller C interprets some keystroke packet sequences as
local commands; for example, the sequence "Local key down, B key down,
B key up, Local key up" will increase the brightness of the console screen.
Other incoming packets are sent on to the host.

In addition to the power and ground inputs (not shown), the Input Pro-
cessor and Console Controller both require a two-phase 5 Mhz clock signal,
denoted cSmhz in Figure 3.10. These clocks are produced by the Clock Gen-
erator section described earlier. The components involved in generating and
buffering the clocks are similar to those encountered earlier:

" The two phase clock generator TP01 converts a single-phase clock signal
into two clock signals 180 degrees mutually out of phase.

" The frequency dividers FD02 and FD03 convert an incoming signal with
frequency n into one with frequency 2.

" The frequency buffers FB01, FB02, and FB03 produce output signals
with the same frequency as their inputs.

Finally, both U and C also have an active-low "reset" input. When the
reset button signal is asserted and the clock signal n257 is running, the Reset
Hold Counter (denoted R) asserts n700 for at least 100ms, which initializes
both the Input Processor and Console Controller.

3.3.2 Physical Organization of the Input Encoder

The Input Encoder implementation centers around an Intel 8035 micropro-
cessor lIntel861. Communication with the mouse and keyboard are done
through a dedicated Intel 8741 microprocessor with onboard erasable pro-
gram memory. The functional subcomponents of the Input Encoder are each
implemented by one or more chips as shown in Figure 3.11 and Figure 3.12:

60 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Figure 3.11: Input Encoder Schematic

* , - - ow.O f~

a'.a I~~a

L2 r.
ri-

WAI 6.

~Z
A8-t wiA

L5 LN

3.3. INPUT ENCODER EXAMPLES 61

Figure 3.12: Input Encoder Physical OrganizationI "
FD0 FD0 U32

P IPO

FBO2

FB3R

U30 6U32

U C

-Input " Console
----- rocessorf Controller

U34_ U33, U7. U8. etc

* The Input Processor is implemented by the Intel 8741 microprocessor
chip U34.

* The Console Controller is implemented by the physical 8035 processor
U33 along with its external PROM (U18) and the buffers for its external
bus data and control signals, involving chips U7, U8, U9, U13, and U24.

@ The Reset Hold Counter is implemented by the 14-bit counter chip U 14
sad some NAND gates on chip U31.

62 CHAPTER 3. TROUBLESHOOTING SCENARIOS

* The remaining functions ae implemented by the inverters and JK
Lipfiops on chips U32 and U30.

3.3.3 Expected Behavior of the Input Encoder

A simple test of the Input Encoder consists of pressing and releasing the
Reset button, then rolling the mouse around. The expected behavior of the
Input Encoder is as follows:

& While the reset button is pressed the output of the Reset Hold Counter
is held low. With the clock input n257 running at 153Khz, the signal
goes high lOOms after releasing the button.

9 The low-to-high transition on n162 causes the Input Processor - with
its clock input running at 5 Mhz - to go from the "stop" state, to the
"run" state in which it transmits keyboard and mouse transitions to
the Console Controller.

9 The low-to-high transition on n162 causes the Console Controller - with
its clock input running at 5 Mhs - to go from the "reset" state to the
"init" state and then to the "monitor" state in which it responds to
interrupts and transmits incoming packets to the host.

0 Each &- inch of mouse motion causes the Input Processor to interrupt
the Console Controller, and because the Console Controller is in the
"monitor" state it is responding to interrupts and a mouse position
update is sent to the Console Controller.

The Console Controller sends the mouse position update to the host.

Each of these high level behaviors has implications for the activity of
certain observable signals. The important ones for 'this example are: - -

" The reset signal n700 will be low, then go high. Vice versa the signal
n162, since u31d is an inverter.

" The active-low interrupt output of U will stay high while the mouse
is still, and will be rapidly asserted and deasserted while the mouse
moves.

3.3. INPUT ENCODER EXAMPLES 63

* The select signal for the 8741 (n226) will remain high except for a short
time after U interrupts. While in any state other than the "reset" state
the read signal RD (n81) and other bus signals will have frequencies
dependent on the input clock rate of Console Controller.

3.3.4 Finding a faulty Input Processor

Suppose that upon rolling the mouse around, the mouse cursor at the host
does not move. This is recorded as a discrepancy at the output of E. The
model predicts that the transition should have been sent if all sixteen chips
were working, but since it was not, the conflict (U7, U8, U9, U13, U14, U15,
U16, U22, U23, U24, U25, U30, U31, U32, U33, U34) results. There are
sixteen candidates above threshold, the top few of which are shown below
(transcript in Appendix A.10). The notation U25op. means that one of the
known fault modes for U25, called "Open," is consistent with the observations
so far; [U25op.] comes out on top because that failure of U25 is likelier than
other any other chip failure, as discussed in the Clock Generator scenario:

Weight Candidate Note
0.135 [U25op..] Oscillator chip
0.102 [U33] 8035 Microprocessor
0.102 [U34] 8741 Microprocessor
0.072 [UI6] PROM

Among many predictions made by the model, the following ones are about
observable signals. In this example, the frequencies of single- and two-phase
clocks are taken to be observable.

64 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Node Signal Expected Support
n178 Interrupt changin U25,U32,U30,U26,

U3l,U14,RN6,RN7}
n226 U Select changing {U25,U32,U30,U26,U31,

U14,U31,U33,RN6,RN7}
n162 Reset hi-lo-hi {U25,U32,U30,U26,U31,

U14,RN6,RN7}
n700 M lo-hi-lo {U25,U32,U30,U26,U31,

U14,RN6,RN7}
n137 Write 27 Khz {U25,U32,U30,U25,U31,

U14,RN6,RN7,U33}
n257 153Khz 153 Khz {U25,U32,U30,U26,RN6,RN7}
c5mhz Clock 5 Mhz {U25,U32,U30,RN6,RN7}
c5mhzl U Clock 5 Mhz {U25,U32,U30,RN6,RN7}
cSmhzh C Clock 5 Mhz {U25,U32,U30,RN6,RN7}

XDE suggests n178, the interrupt line, as the most informative probe
- more specifically, it suggests that the signal be probed to see whether it
changes while the mouse is being moved.

This probe selection is the single most interesting inference in this ex-
ample, and it is important to understand why it was made. In a purely
mechanistic sense, XDE suggested the interrupt line because if a discrepancy
were observed there, the conflict (U25, U32, U30, U26, U31, U14, U31, RN6,
RN7) would result, thereby (approximately) halving the candidate set. From
a modeling point of view, the interesting point is that a crude, temporally
abstract model of the behavior of the Input Processor is adequate to infer
that so long as U is working properly, has power and clock inputs, and is
not being reset, that motions of the mouse will activate the interrupt line.
Similarly, if keys were being pressed, again the interrupt line would be active.
Abstracting the 8741 microprocessor to a two-state device makes prediction
of its behavior in this example much simpler than doing instruction-level
simulation, and still provides predictions that are diagnostically useful.

Returning to the example, suppose n178 is observed to be a constant 1.
This yields (U25, U32, U30, U26, U31, U14, U31, RN6, RN7) as a conflict,
and the top four candidates are as shown below. [U25op.] comes out on top
as before

3.3. INPUT ENCODER EXAMPLES 65

Weight Candidate Note
0.280 [U25op.] Oscillator chip
0.212 [U34] 8741 Microprocessor
0.085 [U141 14-bit counter in Reset Hold Counter
0.085 [U26] 4-bit counter in FDO3

This yields a new set of predictions from among which XDE will select
the next probe.

Node Signal Expected Support

n16 Reet hi-bo-hi {U25,U32,U30,U26,U31 ,U 14,RN6,RN7}
n162 Rset l {U34,tJ25,U32,U30,RN6,RN7}

n700 Reset b-hi-bo {U25,U32,U30,U26,U31 ,U14,R.N6,RN7}
hi {U34,U25,U32,U30,RN6,RNT)

n257 53Khz153 Khs {U25,U32,U30,U26,RN6,RN7}
n25 15Khz0 Hz {U25op=,U26U30U32,RN6,RN7}

csmz Cock 5 Mhz {U25,U32,U30,RN6,RN7}
c~mz Cock 0 Hu {U25opm.,U32,U30,RN6,RN7}

c~mz1 Clck5 Mhz {U25,U32,U30,RN6,RN7}
c~mzl Clck0 Hz {U25o,..,U32,U30,RN6,RN7}

c~mzh Clck5 Mhz {U25,U32,U30,RN6,RN7}
c~mzh Clck0 Hz {U25opU32,U30,RN6,RN7}

Note that node n162 now has two conflicting predictions for its behavior
-the normal behavior, and the misbehavior that it is low at moments when

it was expected to be high. The argument for the latter behavior is as follows.
If U34 is working properly, U has a clock and incoming mouse motions. But
since the int output was not asserted, then it must have been because U was
in the "reset" state. Hence the reset input n162 must be asserted (low).
This is the second most interesting inference in this example, and again, it is
effective because the Input Processor has been reduced to a two-state device:
only when the component models are so simple is it reasonable for the system
to make inferences about component inputs from knowing their outputs.

The highest ranked probe is the input clock to Reset Hold Counter, n257,
which is expected to have a frequency of 153 Khz if {U25, U32, U330, U26,

!I

66 CHAPTER 3. TROUBLESHOOTING SCENARIOS

RN6, RN7} are all working. Probing this signal, it is discovered to have the
correct frequency.

This observation has two major consequences. First, it makes the like-
liest candidate [U25opm] inconsistent. Second, although it makes no new
predictions, it does add new support to some predictions already present.
For example, it was already believed that n167 had frequency 2.5 Mhz if
{U25, U30, RN6, RN7} were working; it can now be deduced that it has
frequency 2.5 Mhz if {U26, RN6, RN7} are working. Similarly cSmhz has
frequency 5 Mhz if {U26, U30, RN6, RN7} are working, and so on. These
inferences result in a new conflict, (U26, U30, U32, U34, RN6, RN7), so that
the resulting highest ranked candidates are:

Weight Candidate Note
0.332 [U34] 8741 Microprocessor
0.132 [U301 Frequency dividers
0.132 [U14] Gates in Reset Hold Counter
0.116 [U321 Frequency buffers
0.116 [U31] Counter in Reset Hold Counter
0.083 [RN6] Pullups
0.083 (RNTJ Pullups

The reset signal n162 is now the highest ranked probe. Probing it shows
that it is behaving normally - it starts out high, then goes low while the reset
button is pressed, then returns high a short time later. Our observation
technology is sufficiently crude that it is impossible to say exactly when
the line went low - the essential observations are that (i) it was asserted
long enough to reset U and C, and (ii) it was unasserted while the mouse
was rolling around. Nevertheless, for simplicity, the observation that gets
recorded is that n700 was high and low at just the times expected. There
are now just five candidates:

Weight Candidate Note
0.449 [U341 8741 Microprocessor
0.184 [U30] Frequency dividers
0.162 [U32] Frequency buffers
0.118 [RN6] Pullups
0.118 JRN7] Pullups

3.3. INPUT ENCODER EXAMPLES 67

Next, an observation is suggested at c5mhz. Doing so reveals that it has
the expected frequency of 5 Mhz. After several more corroborating probes of
clock signals, new conflicts are discovered and candidates eliminated. Even-
tually the only remaining candidates are: L

Weight Candidate Note
0.800 [U34] 8741 Microprocessor
0.200 [RN7] Pullups

A final corroborating probe at node n57 (not shown in Figure 3.10) results
in the sole candidate:

Weight Candidate Note
1.000 [U34] 8741 Microprocessor

This example is the same as that presented in Chapter 1 and has the same
moral: what is interesting about it is the contrast between the simplicity of
the reasoning and the relatively few probes (eleven, to be exact) required
to isolate the fault to a single chip, in spite of the underlying complexity of
the circuit. What made that simplicity possible was the choice of behavioral
abstractions, in particular the temporally coarse behavior models for the mi-
croprocessors, which made it possible to reason about the reset and interrupt
signals without getting swamped in details.

3.3.5 Finding a faulty Console Controller

The preceding example illustrates the important characteristics of the behav-
ior models for the Input Encoder examples. Another example illustrates how
the program isolates faults inside the functional component C (transcript in
Appendix A.11).

The initial inputs and symptoms are the same as before, so the interrupt
signal n178 is suggested as the next probe point. This time, it is observed
to be changing while the mouse is rolled around. This suggests that it is
not the Input Processor U that is working normally. Probing the clock signal
n257 shows that its frequency is normal, suggesting that the Clock Generator
section is working normally as well. This leaves twelve candidates, the top
five of which are inside the Console Controller C:

m4

68 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Weight Candidate Note
0.165 [U33] 8035 Microprocessor
0.115 [U16] PROM
0.082 [U7] Instruction Address Latch A
0.082 [U9] Buffer
0.082 [U8] Buffer

The behavior of the 8035 microprocessor inside E is described in a tem-
porally coarse fashion, just as the 8741 microprocessor was in the previous
example. The 8035 is either in the "run" or "stop" state, depending on the
frequency of its clock input and whether its reset input is asserted. While
running, it should be repeatedly asserting the signal PSEN, which reads in-
structions from the PROM. If the PROM and some other buffers are all
working properly, then the Read and Write bus control signal should be re-
peatedly asserted as well. The top ranked piobes are shown here:

Node Signal Expected Support
n81 Read changing {U7,U8,U9,U30,U32,U33,RN6}
n137 Write changing {U7,U8,U9,U30,U32,U33,RN6}
nil PSEN changing {U30,U32,U33,RN6}

After observing that none of these three signals are changing, there are
just four candidates:

Weight Candidate Note
0.488 [U33] 8035 Microprocessor
0.195 [U30] Frequency dividers
0.171 [U32] Frequency buffers
0.122 [RN6] Pullups

Two subsequent probes of the clock inputs to the 8035 microprocessor
U33 show that they are normal and leave U33 as the only candidate.

As before, the temporally coarse model of the behavior of the micropro-
cessor and its combined behavior with the PROM and other components
allowed a few simple probes (nine, in this example) to find the broken mi-
croprocessor.

3.4. SUMMARY OF TROUBLESHOOTING SCENARIOS 69

3.4 Summary of Troubleshooting Scenarios

The seven scenarios presented above provide context and a set of examples
that the next few chapters will draw upon. They also illustrate that the trou-
bleshooting engine XDE is able to deal with complex devices not due to any

major innovation in the underlying model-based troubleshooting technology,
but rather due to innovations in constructing the device model that it uses.
XDE works well on the Console Controller Board because the board can be
modeled with the goal of troubleshooting explicitly in mind, and this implies
certain desirable features of that model. Temporally coarse descriptions of
behavior are obviously important, but there are others. The following three
chapters will present in detail the representations of circuit structure, circuit
behavior, and faults that all together can represent complex devices in a way
that makes it feasible for XDE or any other model-based troubleshooting
engine to troubleshoot them.

4

,wz mm atm m m i em s s mmmi m

Chapter 4

Representing Circuit Structure

Model-based troubleshooting requires an explicit representation of the in-
ternal structure of the device being diagnosed. All the diagnoses that the
troubleshooting engine produces will be expressed in terms of the components
that appear in that structure representation. The need for efficiency indi-
cates several desirable properties of this structure representation: it should
be a strict hierarchy, its leaves should correspond to the locations of possible
failures, and every field replaceable component should correspond to some
node in the hierarchy. These properties are embodied in a representation of
the physical structure of the device. Predicting the behavior of a complex
device from the details of its physical organization can be greatly simplified
by using a representation of the intended behaviors of groups of components
at multiple levels of abstraction. For example, it is easier to reason about
the behavior of a digital logic gate than about the equivalent collection of
resistors and transistors: the structural composition of those components en-
ables abstraction of their combined behavior. For the same reason, it is easier
to reason about an adder performing arithmetic on integers than about the
equivalent collection digital logic gates, and so on. A nonstrict functional hi-
erarchy provides a way of organizing these structural compositions to which
intended behaviors are attached. The nodes in the functional hierarchy are
essentially "slices" through the physical structure (Sussman77l [Sussman80].
They are chosen explicitly to facilitate behavioral abstraction.

These two views of digital circuit organization are concretely expressed in

70

4.1. PHYSICAL ORGANIZATION 71

the circuit structure language BASIL'. BASIL descends from DPL [Batali8l]
and TDL [Davis83] and it inherits the idea of representing circuit structures
as graphs of objects with connections between them at "ports," although
BASIL is implemented quite differently. BASIL provides predicates and a
vocabulary of primitive components, but more important than BASIL itself
are the principles for composing these primitives into physical and functional
organizations in ways that facilitate troub).-hooting. Two key principles are:

* Components in the representation of physical structure should corre-
spond to the possible repairs.

* Structural composition should allow simplification of behaviors and
facilitate behavioral abstraction.

4.1 Physical Organization

A representation of the internal physical organization of devices is essential in
model-based troubleshooting. The physical world is where the observations
that the troubleshooting engine requests and the repairs that it recommends
are located; the physical world is also the source of information about the
plausible failures.

4.1.1 Primitive Components

To represent the physical structure of a device for troubleshootling, the first
and central issue is choosing the primitive level of detail. Since the complex-
ity of the world is to be abstracted away into a graph of components and
their connections, the essence of the choice is in where to draw those primitive
component boundaries. Drawing these boundaries makes three fundamental
commitments. First, it makes some failures indistinguishable to the trou-
bleshooting engine - every failure inside a primitive component will result
in the same diagnosis. Second, it makes some failures representable only
as failures in multiple components - for example, the troubleshooting en-
gine would diagnose a short circuit between two (supposedly) non-interacting
components as failures in both components. Third, the lower the level of

'Box And String Interconnect Language.

72 CHAPTER 4. REPRFSENTNG CIRCUIT STRUCTURE

physical detail the more work will be involved in predicting behavior - for
example, representing individual transistors on a chip implies the possibil-
ity that the behavior of each individual transistor will be reasoned about
explicitly. Thus there is a tradeoff to be made between the detail in the
representation and the efficiency of reasoning with it: more detail makes di-
agnosis more accurate but results in more work. BASIL or any other structure
representation is a compromise between these conflicting goals.

BASIL uses etches, pins, and chiplet. (areas of silicon real estate inside
the chip package) as its primitive components. Figure 4.1 shows a cross
section of a chip soldered into a board. The etches, pins, and chiplet are
all components. The principles at work in choosing these as primitives are
discussed below.

Figure 4.1: Chip Cross Section

(in a U32a) Chip U32 (out y U32a)

(pin 4 U32) " (pin 12 U32)

! iChiplet U32aI

........ Board

Etch N197 (bi 2 N197)

(bi 1 N165)

e Collect fault locations with indistinguishable effects into a single com-
ponent.

Electrical signals travel between the etch and the silicon inside chips
through a sold -r joint at the hole, the pin on the chip, and a tiny bond-
ing wire that reaches from the pin to a metal pad on the silicon. Opens and

4.1. PHYSICAL ORGANIZATION 73

shorts can happen to the pin proper, the bonding wires, and the solder; the
bonding wire is especially susceptible to being shaken loose and becoming an
open circuit. Under the assumption that only the voltages and currents at
the solder joint will be observable, these physical failures are indistinguish-
able. Thus they are all treated as one component, called a pin. The pin has
a port at each end, referred to here as the solder and the bond ports.

e Collect many individually unlikely fault locations into a single compo-
nent.

The metal strips that run between the holes in a board are called etches.
They are usually tree-structured when connecting more than two holes.
Sometimes branches of the etches crack (becoming open circuits) or get ac-
cidentally connected to other etches (becoming short circuits or "bridging"
faults). Such failures are somewhat less likely than the bonding-wire breaks
mentioned above. BASIL thus represents an entire metal etch - no matter
how many branches it has - as a single component with one port at each
hole. There is no distinction between cracks in different branches of the etch;
any real break will be diagnosed as a failure of the entire etch. There is
also no representation of the physical adjacency of different etches and no
way to explicitly represent bridging faults; real shorts between etches will be
misdiagnosed as a pair of failures in the two etches.

BASIL could represent each branch and junction of the etch explicitly,
and could represent the points of possible bridging explicitly, but this would
entail an unreasonable number of primitive components. It would be ineffi-
cient since these faults are not nearly as common in the field as others. An
alternative would be to represent the possible points of failure implicitly by
representing the three-dimensional layout of the etches; this has not been
done either.

The internal structure of chip packages provides another example of this
principle. Every transistor on a silicon chip may produce a detectably dif-
ferent misbehavior if it fails, but any individual failure is relatively unlikely.
Hence each independent functional unit on the silicon within a chip is a prim-
itive component, referred to as a chiplet. For example, a 74LS04 chip has six
inverters on it; each of these inverters is a separate chiplet within the chip.

74 CHAPTER 4. REPRESENTING CIRCUIT STRUCTURE

4.1.2 BASIL

BASIL represents the types of components and their relationships using four
predicates. The basic syntax is Cambridge prefix predicate calculus using
I...] to indicate predicate terms and (...) to indicate function terms.
The syntax is inherited from JOSHUA [Rowley87].

The predicate ako forms the lattice of types. [ako ?x ?y] means that
all individuals of type ?x are of type ?y also. For example, etches are a kind
of component: [ako etch componentJ. The predicate ako* is the Kleene
star of ako.

Among the primitive types of component are etch, chiplet, pin,
inverter, resistor, and switch. Figure 4.2 shows a small portion of the
type hierarchy.

Figure 4.2: Abbreviated AKO hierarchy

Component

ako*
ako* Connection ako*

Inverter I
%% Chiplet Pin Etch

isa / I

u32a (pin 4 u32) n119

The predicate isa denotes the most specific types of an individual. For ex-
ample, u32a is a physical realization of an inverter in silicon; hence it is both
a chiplet and an inverter. These are denoted [isa u32a chiplet] and
[isa u32a inverter]. The predicate isa+ denotes the relationship between
an individual and all of the types to which it belongs. Thus [isa+ ?x ?z] ==
[isa ?x ?y] A [ako* ?y ?z]. For example, u32a is a component because
it is an inverter, and inverters are components: [isa+ u32a component].

The chip cross-section in Figure 4.1 showed the following set of isa rela-
tions:

4.1. PHYSICAL ORGANIZATION 75 --

lisa n197 etch] [isa (pin 4 u32) pin] [isa u32a chiplet]
lisa n165 etch] lisa (pin 12 u32) pin] lisa u32a inverter]

Components interact with other components through ports. By conven-
tion a port denoted (?direction ?id ?couponent) is a port of that com-
ponent. The direction function is one of in, out, or bi indicating that it
is intended to be an input, output, or bidirectional port respectively. For
example, (in a u32a) is the "a" input of inverter u32a. (bi 2 n119) is
the port where etch n119 electrically interacts with pin 4 of U32. The predi-
cate has-port denotes this relationship; for example, u32a has an "a" input:
[has-port u32a (in a u32a)]. The set of assertions about ports shown in
the chip cross-section of Figure 4.1 is:

[has-port n197 (bi 2 n197)] (has-port n165 (bi 1 n165)3
[has-port u32a (in a u32a)] (has-port u32a (out y u32a)]

Connections are a kind of component that have exactly two ports. Each of
these ports is shared with one other component. The only kind of connection
shown so far are pins, which are named (pin ?number ?chip)2 . For exam-
ple, in the chip cross-section of Figure 4.1, pin 4 of chip U32 connects port
2 of etch n119 to input port "a of inverter u32a. This is denoted with the
predicate conn as [cowi (pin 4 u32) (bi 2 n119) (in a u32a)]. Note
that in BASIL the only substantive difference between ordinary components
and connections is that the names of the ports of a connection refer to ad-
jacent components, not the connection itself. The connections shown in the
chip cross-section of Figure 4.1 are the two pins:

[comn (pin 4 u32) (bi 2 n197) (in a u32)]
[conn (pin 12 u32) (bi I n165) (out y u32)]

BASIL has other predicates and a more densely populated ako hierarchy
than indicated here. These details will be presented shortly.

2Most components are named by a single atom such as u32. Pins are the sole exception,

since names like (pin 4 u32) are function terms. They could just as easily have been
named by atoms, for example "u32.4."

76 CHAPTER 4. REPRESENTING CIRCUIT STRUCTURE

4.1.3 The Physical Part-Of Hierarchy

The predicates and primitive component types in BASIL allow an entire cir-
cuit board to be described in terms of the subparts of its chips and the
connectivity among them, but it would be inefficient to troubleshoot a large
circuit using only this primitive level of detail. Almost any symptom alone
would yield dozens of pins, etches, and chiplets as suspects. A hierarchic rep-
resentation allows groups of primitive components to be efficiently treated
as a single component. For example, it is more efficient to diagnose to the
level of chips before considering the internals of those chips, since there are
far fewer chips to consider than pins and chiplets. The predicate ppart-of
("physical part of") denotes the relationship that forms the physical hierar-
chy; [ppart-of u32a u32] means that u32a is a part of u32.

The right physical components to group together to form the ppart-of
hierarchy are the ones that correspond most directly to repair actions. The
main objective of the troubleshooter is to find the repair or set of repairs
most likely to make the device work again. Since the troubleshooting engine
computes diagnoses that correspond to sets of components, it would be effi-
cient to have a one-to-one correspondence between the possible repair actions
and the components in the hierarchy. This would make each diagnosis map
directly to a set of repairs to be done, and the troubleshooting engine would
not waste effort distinguishing between different faults that had the same
repair. In the circuit domain this is straightforward, since for the failures un-
der consideration the possible repair actions consist only of replacing boards,
replacing chips, and re-soldering broken etches. By making the hierarchy of
components a physical hierarchy in which chips and boards are the only com-
ponents other than the primitives, the diagnoses will be directly translatable
into possible repairs. In the digital circuit domain the resulting hierarchy is
bushy; one or more chiplets and their pins together form a chip, and chips
and etches together form the board. Figure 4.3 shows a small portion of the
physical part-of hierarchy of the Console Controller Board.

Manufactured artifacts can nearly always be decomposed into a part hi-
erarchy that is strict, a decomposition that reflects the way the artifact was
constructed. Chips are fabricated separately and soldered into the board,
for example, and this indicates that the chips and printed board have no
shared parts. There are exceptions whenever the assembly process itself
causes boundaries to be diffuse. Parts may be built up by incremental and

4.1. PHYSICAL ORGANIZATION 77

Figure 4.3: A Portion of the ppart-of Relation

Board
Console Controller

... Chip Chip Chip Etch Etch
U25 U30 U32 N165 N167

Ninverter Inverter
Pin Pin Chiplet Chiplet

... (pin 1 U32) (pin 2 U32) ... U32a U32b

overlapping manufacturing steps, as with the layers of a silicon chip layout;
parts may merge smoothly into one another, as with pieces of metal welded
together. As long as the physical object can be divided along boundaries
there is at least a degenerate strict hierarchy to be found: all of those parts
can be immediate descendants of the overall structure. These exceptional
and degenerate cases do not occur in digital circuit boards at the level of
description that BASIL uses. Each pin and chiplet is part of just one chip,
each bit of solder is part of one etch, and so on. The same would be true
for larger scale organizations of boards, card cages, cabinets, and so on: the
way the artifact gets assembled from its parts forms the physical part-of hi-
erarchy. Even cables between different cabinets are not an exception; they
customarily have their own part numbers and are typically listed in the parts
list of the entire computer. The physical hierarchy in BASIL is strict and that
accurately represents the real world.

The fact that the physical hierarchy is strict simplifies comparing alte,-
native diagnoses. It need not be strict - the troubleshooting engine would
still compare diagnoses and rank them appropriately - but a strict hierarchy
makes it more efficient.

For troubleshooting, each component has a status indicating whether it
is believed to be working normally, faulty in some kncwn way, or faulty

78 CHAPTER 4. REPRESENTING (JIRCUIT STRUCTURE

in an unknown way. The predicate status-of denotes this relation. For
example, [status-of u32 working] means the component U32 is working,
that is, it is not physically damaged. Because BASIL assumes that only
components can fail, the status of each other component can be deduced
from the status of the components that are part of it, or that it is part of.
In the example above, the board is working if all its chips and etches are
working; the chip U32 is working if all its pins and the six inverters inside it
are working. Contrapouitively, if U32 is not working then at least one of its
pins or inverters is not working, and so on.

While troubleshooting, each status and each diagnosis is assigned a rela-
tive likelihood (as discussed in a later chapter). Computing these likelihoods
is greatly simplified if the different component statuses can be treated as sta-
tistically independent. One way for that independence to be violated would
be for components to share parts, since a single failure in some shared part
would appear as a failure in all the sharing components (in fact, since the
probabilities of failure in the two parent components would be different from
their product, by definition their probabilities of failure are not independent).
With a strict hierarchy it is trivial to determine whether parts are shared; a
pair of components can share parts only if one is an ancestor of the other.
The strict hierarchy thus simplifies computing relative likelihoods since it
can easily be arranged that no diagnosis ever mentions failures in both a
component and one of its ancestors.

4.2 Functional Organization

Although the physical organization discussed above is central to the trou-
bleshooting task, the physical packaging of digital circuits often has an almost
accidental nature. Implementing the desired functionality using off-the-shelf
chips typically means sharing several functions in one package (for example,
four gates on a chip) or using only a portion of the functions on a chip (for
example, using a universal shift register with all its control inputs tied to
power or ground). For efficient reasoning about the behavior of a complex
device, it is useful to be able to consider the combined behavior of portions
of several different physical components. Moreover, this reasoning requires
behavioral abstractions, and some behavioral abstractions do not apply to
primitive components. For example, it is simpler to reason about a digital

4.2. FUNCTIONAL ORGANIZATION 79

adder operating on integers than about several one-bit adders doing their
operations on bit vectors. Structural composition of those one-bit adders
along with their interconnecting wires yield a composite component whose
behavior can be described abstractly in terms of n-bit integers. That the
one-bit adders reside on different physical componints is an accident of im-
plementation; together with their interconnecting wires they still form an
adder component.

BASIL represents this knowledge as functional components augmenting
the physical components described earlier. Functional components are simi-
lar in many ways to physical components; they have ports and statuses, and
they are organised into a hierarchy by the fpart-of relation. The primitive
components discussed earlier - etches, pins, and so on - are both physical
and functional components; the functional and physical hierarchies thus meet
at their leaves. This yields the expanded ako hierarchy shown in Figure 4.4.

Figure 4.4: Expanded AKO Hierarchy

Component

Functional- Physical-
Component Component

ko j Primitive-

Connection Component Chip

InverterI

Chiplet Pin Etch 74LS04
'.. / ' I I

u32aI Iu32a (pin 4 u32) n1i9 u32

80 CHAPTER 4. REPRESENTING CIRCUIT STRUCTURE

4.2.1 The Functional Part-Of Hierarchy

The functional part-of hierarchy is not strict, and has a much richer vocabu-
lary of component types than the physical. The reason for this is that there
are often several alternative and incomparable ways of describing even the
same collection of components. For example, one way to describe the com-
bination JK flipflop and pullup in Figure 4.5 is as a "Toggle," which has
a one-bit output; another way would be as a "two-phase clock generator,"
which has a two-bit output. Both behavior descriptions are legitimate, but
neither subsumes the other.

Figure 4.5: JK Flipflop Unencapsulated

P

The Toggle is as an example of a functional component that is the com-
position of several primitive components: (i) a JK flipflop chiplet (ii) the
etch that connects four of its inputs together, and (iii) the pins that connect
that etch to the chiplet. The etch, pins, and chiplet are all fpart-of the
Toggle. Figure 4.6 shows these subcomponents (rectilinear boxes), the ports
at which they interface (the black spots), and the boundaries of the Toggle
(the dotted line). Both the JK flipflop and Toggle have an explicit "power"

4.2. FUNCTIONAL ORGANIZATION 81

port that will be explained later; to avoid clutter these are not shown. Even
with this simplification Figure 4.6 may be a bit difficult to understand; the
difficulty of conveying encapsulations like this visually stems in part from the
fact that etches and pins are not usually treated as explicit components, and .
from the fact that the desire to keep the boundary convex requires requires
distortions of the normal two-dimensional layout.

Figure 4.6: JK Flipflop Encapsulated as a Toggle

Resistor

i JKFF

iToole - tI

The Toggle has ports just as the JK flipflop did. The relationship be-
tween the ports of an abstract component and the ports of its underlying
components is represented with the predicate corr ("correspondence"):

, [corr correspondence abstract-port . concrete-ports] means
that there is a group of one or more concrete-ports that correspond

II

82 CHAPTER 4. REPRESENTING CIRCUIT STRUCTURE

to one abstract-port. The nature of that correspondence is denoted
by the correspondence argument. The most common correspondence
is identity, which means that the two ports are equivalent. Other cor-
respondences include concat (the concatenation of bits into integers),
ttl-power (a high voltage port and a ground port that correspond to
L single "power" port), and two-phase-clock (a pair of one-bit ports
at which the voltages are 180 degrees out of phase).

In the case of the Toggle, each of its three ports stand in an identity
correspondence with one underlying port apiece. These ports are indicated
in Figure 4.6 where the dotted line passes through ports.

The power port that appears on nearly all chips introduces some corL
plications, since the power supplied to all the chiplets on a typical chip is
supplied through a pair of pins, "pwr" (high voltage) and "gud." Figure 4.7
shows the ttl-power correspondence between the ports at these pins and a
single power port shared by the whole chip. The power port for the whole
chip then stands in an identity correspondence with each of the power ports
of the chiplet components on the chip. U30, for example, is a dual JK flipflop
chip, and its two flipflop chiplets are named U30a and U30b; they each have
a power port along with their other ports (cdk, for example). The advantage
of the power port is that it somewhat simplifies the behavior descriptions of
the individual components.

4.2.2 Principles for Structural Composition

Successive layers of possibly overlapping compositions can create a deep
tpart-of lattice representing many behavioral groupings in the device. Yet
it is one thing to be able to explicitly represent the hierarchic functional orga-
nization of a complex digital circuit, it is quite another to discover the right
components to compose together and the right behavioral abstractions to use.
Starting only from a digital circuit schematic and behaviorally detailed de-
scriptions of the physical component behaviors, someone or something must
construct that richer representation. Currently it is constructed by hand,
but importantly, not in an ad hoc fashion. There is a fundamental principle
at work:

e Structural composition should enable behavioral simplification.

4.2. FUNCTIONAL ORGANIZATION 83

Figure 4.7: Power Ports of Chip U30 and its Chiplets

(in CLK u3Ob) * 0 (in CLK u3Oa)

(in POWER u3Ob)* 0 (in POWER u3Oa)

IDENT
c (in POWER u30)

TTL-POER correspondence

(in PWR u30) *TL 0 (in GND u30)

That is, the grouping of connected or related components together -

structural cc, aposition - is distinct from behavioral abstraction, but from a
troubleshooting perspective, the only motivation for structural composition
is to simplify behavior. For example, there is no point in composing four
one-bit adder slices together and calling it an "adder" unless the behavior
associated with the adder takes advantage of the abstraction that maps from
vectors of bits to integers. The Toggle is a worthwhile functional component
because its behavior is much simpler than the whole JK flipilop. In digital
circuits, there are three ways the general principle manifests itself and hence
three reasons to introduce structural compositions:

1. To suppress constant signals. For example, if a node is pulled up and
always supplies a "high" value to some component, the pullup and
component can be grouped together to form a simpler component.

2. To encapsulate reconvergent signals. Reconvergent signals are signals
that originate from a common source, and then are recombined to pro-
duce some other signal. Such structures can cause difficulties for pro-
grams that reason about circuit behavior through local propagations.
A simple example is shown in Figure 4.8. In the unencapsulated ver-
sion, purely local propagation cannot deduce from A=1 and C=1 that

84 CHAPTER 4. REPRESENTING CIRCUIT STRUCTURE

F must be 0. Encapsulating the fanout of B and its reconvergence
alleviates the problem.

Figure 4.8: Encapsulating Reconvergence

A ~A- B_ FFf=
B-- thenO0
EC-- else B

3. To encapsulate loops. Digital circuits often perform computations se-
quentially with a loop of combinational circuitry and registers that store
intermediate results. The encapsulation of combinational circuitry and
registers may have a combined behavior that is simpler to reason about
than that for all the individual components. In a sense this is a special
case of encapsulating reconvergence. Figure 4.9 shows a simple exam-
ple; the combined D-flipflop and XOR-gate form a parity generator
for a serially encoded input. In concert with the appropriate behav-
ioral abstraction it is not necessary to reason about the clock-by-clock
operation of the combined structure.

Figure 4.9: Encapsulating a Sequential Loop

D Parity

Every non-primitive functional component that appears in the Console
Controller Board description is motivated by, and ap example of, one of these

4.2. FUNCTIONAL ORGANIZATION 85

three principles. The interesting and difficult part of the story concerns the
detection and formulation of the appropriate abstract behaviors to go along
with the structural compositions; that is treated in the next chapter.

Chapter 5

Representing Circuit Behavior

A central requirement of the model-based troubleshooting methodology is
that the program be able to make predictions about behavior based on ob-
servations of the inputs and outputs of a device and its subcomponents.
MaJing predictions requires both representation of behavior and computa-
tional machinery to determine that, for example, "if A is an adder and its
inputs are 2 and 2, its output is 4." In practice, a second requirement is
that the program be able to make those predictions using a variety of differ-
ent domain-specific abstractions, making compromises between the precision
and efficiency of predictions made with different vocabularies. In the case of
adder A, there might be a good reason to represent the inputs either more
abstractly as simply "even" or "odd" or more concretely as bit vectors. Since
troubleshooting real digital circuits means reasoning about the behavior of
components from resistors to microprocessors, the representation must be
flexible enough to integrate many levels of abstraction.

This chapter is partly about TINT, a language of predicates and rules that
builds on BASIL by propagating temporal constraints through a network of
instantiated components. TINT is a framework that can be used to describe
the behavior of components at several levels of detail. What is important,
however, is not just the framework itself, but the rich variety of abstractions
and component behaviors that will populate it. Hence this chapter is also
about the abstractions that make it possible to represent the behavior of
complex circuits for troubleshooting.

The primitive level of abstraction is a switch level model that uses volt-
ages in the set {0.1} and currents in the set {-,O.+}. The switch level

86

87

model is discussed in Appendix E; for the most part the reader may assume
that the primitive level of detail is the standard digital model using voltages
in the set {,}. Some traditional abstractions appropriate to representing
and troubleshooting complex digital circuits are those that concern the ma-
nipulation of groups of bits - spatial abstractions that make it possible to
describe (for example) the signal being carried by an 8-bit bus as a number
or an ASCII character instead of a bit vector.

Yet, there are much more powerful abstractions; motivating them re-
quires defining some terminology. The purpose of a behavior model in trou-
bleshooting is to make predictions based on observations of the device. The
predictions produced by a given model can be characterized as to the fidelity
with which they match the real world, their precison, and the efficiency with
which they can be made.

Fidelity is best illustrated by a counterexample: suppose a digital
mod 16 adder were to be represented as if it did ordinary integer addition.
Presenting the real adder with inputs of -8 and -8 correctly produces a
0. The model, however, predicts that it should produce -16. This violates
fidelity, and the behavior of the adder in this case would be improperly re-
garded as a symptom of failure. In model based troubleshooting, fidelity is
an overriding goal, since it is better to make an imprecise prediction than to
make a wrong one.

Precision and loss of precision in the predictions made with a behavior
model are intimately tied to the level of abstraction in the model. For ex-
ample, modeling the mod 16 adder in terms of the voltages on its input and
output wires would be more precise than modeling it using its mod 16 defi-
nition. Modeling it in terms of "negative" and "nonnegative" numbers would
sacrifice precision in two ways. One of these ways is the loss of precision in
the numbers themselves. A second loss of precision occurs because the be-
havior of the real adder is a total function, but the behavior with respect
to "negative" and "nonnegative" is partial, since "negative + nonnegative"
yields an ambiguous result. This latter special type of precision loss will be
referred to as a loss of strength, that is, weakness in the behavior model.

The goals of precision and efficiency can be traded off against one another:
if efficiency were of no concern, the predictions could always be very precise;
conversely, the less precise the predictions are the cheaper it is in general they
are to make. The problem of modeling behavior for a given class of devices
requires choosing vocabularies and behavior descriptions that retain enough

88 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

precision that real symptoms will be detectable, yet make efficient prediction
possible. The consequence of imprecision is diagnostic indiscriminacy. Thus
the issue is, what abstractions will sacrifice the least precision for the most
efficiency?

Against this background of fidelity, precision, strength, and efficiency
issues, troubleshooting complex digital circuits motivates abstractions that
sacrifice temporal precision. Among the salient characteristics of the domain
are (i) the gap of several orders of magnitude between the temporal granu-
larity at which events occur in the machine and the temporal granularity at
which observations can be made, and (ii) the fact that physical failures in
digital circuits are frequently manifest at coarse timescales. These charac-
teristics mean that temporal precision can often be sacrificed without losing
the strength needed to detect symptoms. Efficiency is gained through tem-
poral abstractions that make it possible to reason about large numbers of
events occurring in the circuit without having to refer explicitly to each one.
The vocabulary of temporal abstractions includes familiar concepts such as
change, sample, duration, sequence, count, cycle, and fiequency.

The advantage of temporal abstractions is that when applied to compo-
nents and groups of components with complex behaviors - even micropro-
cessors - the resulting temporally abstract behaviors can be exceedingly
simple. The basic idea is that a given behavior can be usefully abstracted if
changes on its inputs always result in changes on its output. Every change of
value on the input of an inverter, for example, results in a change of value on
its output. Even if that property does not hold, there are still several generic
principles for forming useful partial descriptions. For example, a temporally
abstract behavior for adders might relate the number of changes on its in-
puts to the number of changes on its outputs, but there is no interesting
relationship for the addition behavior as such: both inputs could change si-
multaneously in such a way that they cancel each other out. One of the
generic principles for forming useful partial descriptions is "holding an input
constant," and in this case, if one of the inputs of an adder is held constant
all changes on the other input do propagate through. Temporally abstract
behavior descriptions will be given for a number of components including
gates, counters, and microprocessors.

Although the main purpose of this chapter is to present the details of
defining and reasoning with behaviors and temporal abstractions, the under-
lying "modeling for troubleshooting" theme recurs several times:

89

• Many of the temporal abstractions to be defined are motivated by the
desire to explicitly represent easily-observed features of signals.

* Individual behavior definitions are judged for usefulness on the basis of
simplicity and therefore the tractability of the prediction problem in a
real troubleshooting session.

* Many of the rules that get included in the model are judged worthwhile
because they mention observable signals or can make predictions over
long stretches of time.

* TINT itself is deliberately limited in its expressive power, and handles
the "frame problem" in a simplistic way - two engineering decisions
taken because they keep the troubleshooting engine simple.

With troubleshooting as the ultimate goal, this chapter considers in turn
the language TINT, the representation of combinational and sequential be-
haviors, the explicit representation of temporal abstractions, and techniques
for constructing temporally abstract behavior descriptions for complex cir-
cuits.

90 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

5.1 TINT

The behavior of circuit components is represented using TINT', a simple
temporal reasoning system in which rules are used to derive facts about the
values of functions of time. A function of time is called a aigna; for example,
the voltage at a circuit node is a signal because its value can change over
time. In contrast to more sophisticated models of time (for example, the
interval model in [Allen84]), for simplicity time is taken to be a sparse set,
the integers divisible by a temporal granularity constant 6. Granularity can
be thought of as the smallest unit of time that is measurable by available
instruments. For the most part the rules and other definitions that follow
would remain unchanged for the limit as 8 goes to 0 if time were taken to be
dense. TINT provides two predicates thru and tsam for making assertions
about signal values:

1. [thru ?1 ?u ?signal ?value] means that from the lower bound
time ?l to the upper bound time ?u inclusive, ?sipnal had value
?value.

2. [tsam. ?l ?u ?signall ?signal2J means that at every time be-
tween the lower bound ?1 and the upper bound ?u inclusive, ?signall
has the same value as ?signal2.

Any token can appear as the ?value of a signal.
Only integers, -oo, and +oo can appear as time arguments to the thru

and team. predicates. This use of timestamps in TINT rather than sym-
bolic quantities or expressions results in serious limitations as compared to
other temporal reasoning systems, but it is adequate for demonstrating trou-
bleshooting.

5.1.1 Signals

The ?signal arguments of the thru and teame predicates are function terms.
For example, the term (voltage (in a u32a)) denotes the voltage signal at
port (in a u32a). The voltag, function maps a port to a real-valued signal.
Functions from signals to signals will be used to define abstractions and

'Timestamped INTervals.

5.1. TINT 91

behaviors. Abstractions describe relationships between signals at different
levels of detail. Behaviors describe the relationships that components enforce
between their input and output signals.

Signals, abstractions, and behaviors are denoted for concreteness as pro-
cedures in a side effect free LISP dialect similar to SCHEME [Abelson85], as
in [Weise86I. These procedures are not executed by an interpreter; their sole
purpose is "mental hygiene": before writing rules to make inferences about
the values of signals at various levels of abstraction it is important to know
what the signals mean. Almost any other language could have been used, but
the essential concepts all concern functions, and SCHEME (and the underly-
ing lambda calculus) is a powerful and familiar representation for functions.
Only a few such definitions are shown in this section; the remainder are in
Appendix B. All obey the following conventions:

e The -- symbol indicates definitional equivalence and"..." indicates
elision; for example, x a- (lambda (y) ...) indicates that x is a
function of one argument whose body is not shown.

e Capitalized symbols denote function arguments and lowercase symbols
denote all others.

For example, a function like voltage is primitive and can be defined as
shown below. It maps a port into a function from time to real numbers:

voltage --
(lambda (port)

(lambda (time) ...))

The abstraction voltage-to-logic-level expects a function of time
whose range is the real numbers and returns yet another whose range is
{o, 1}:

voltag e-to-logic-level --
(lambda (V)
(lambda (time)

(if (< (V time) 1.5) 0 1)))

The function 11 takes a circuit node and yields a function of time whose
range is {0, 1):

92 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

11 -=

(lambda (port)
(voltago-to-logic-lovel

(voltage port)))

TINT does not use these lambda definitions directly, but rather reasons
with predicate ground terms containing composite terms built up from prim-
itive signals and abstractions. [thru -oo +oo (11 (in a u32a)) 1], for
example, means that the logic-level at port (in a u32a) was always 1.
[thru -oo +oo (change S) nil] means that the value of some signal S
never changed, or, literally, that the signal resulting from the application of
the change abstraction to signal S was always nil.

5.1.2 Rules

TINT provides rules that are used in data-driven (forward chaining) fashion
to propagate the consequences of observations of signals. The following is a
rule as the program would sec it. It says that if x is a thing, and the value
of any signal s is known over an interval of positive duration, then the signal
obtained by applying abstraction to s is the fun of its value:

(defyrule nonsenso-rule (:forward)
:p cisa -x thing
: s [thru ---- =u =s =v]

: f (< -i =u)
:1 (tell I[thru ,-1 ,-u [abstraction =a] (fMun =v)]))

The rules use an extension of JOSHUA syntax. The M prefix marks uni-
versally quantified variables; :p marks trigger patterns whose matching pred-
icate terms will not appear in any resulting truth maintenance system (TMS)
clauses; :s marks the predicate terms that do appear in clauses; :f marks
LISP filters that must return non-nil for the rule to fire; :1 marks the
LISP body of the rule; ' starts a quoted structure template and , indicates
evaluation of a form within that template, as in Common LISP ([Steele84]
pp. 349-351). For implementation reasons, there is no distinction between
function and predicate terms; they are both denoted with [I syntax.

For presentation purposes, however, the above rule would be formatted ds
follows, using ? to indicate variables, omitting details of truth maintenance

5.1. TINT 93

and backquoting, and retaining for clarity the distinction between predicate
and function terms:

If [isa ?x thing]
and Cthru ?I ?u ?a ?v]
and (< ?l ?u)

Then Cthu ?1 ?u (abstraction ?s) (fun ?v)]

5.1.3 Signal Histories

The set of all thru predications (predicate ground terms) referring to the
same signal is called the history of the signal. TINT maintains the following
invariants for every pair of predications in a given signal history:

" Conciseness: overlapping intervals of the same history are combined
into marimal intervals. If [thru ?11 ?ul ?s ?v3 and Cthru ?12 ?u2
?s ?v are both true, and the two intervals touch or overlap - that
is, (+ 8 (=ax ?l1 ?12)) is less than or equal to (ain ?ul ?u2) -

then [thru (ain ?11 ?12) (max ?ul ?u2) ?s ?v] is also true. The
latter predication denotes a maximal interval. As long as it remains
true, it shadows both predications [thru 7M1 ?ul ?s ?v3 and [thru
?12 ?u2 ?s ?v], and any other predications it subsumes. Rules never
fire on shadowed terms.

" Consistency: signals cannot have more than one value at any given
time. [thru ?11 ?ul ?s ?vl] and [thru ?12 ?u2 ?s ?v2] can-
not both be true unless either their values are the same (that is,
(equal ?vl ?v2)) or the intervals are disjoint (that is, (< ?ul ?12)
or (< ?u2 ?11)). Otherwise TINT records a conflict.

TINT takes advantage of the fact that the lower bound argument ?I in
tbru predications is restricted to a totally ordered set to organize each signal
history as a list ordered by lower bound. This makes the above invariants
relatively easy to check and enforce.

A truth maintenance system is used to maintain boolean constraints
among thru (and other) predications. Ordinary implication is encoded as
a clause; for example, if X and Y together imply Z then there is a clause

94 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

-,X V -,Y V Z. A "shadowed" assertion is one that is implied by other (pre-
sumably more general) assertions and that should not trigger rule firings as
long as it is implied by those other assertions. Shadowing is implemented
as an extension to the TMS. A clause may have any of its literals marked
to be shadowed when they are the only satisfiable literal in the clause. For
example, suppose A is more general than B. Let --A V B be a clause with
B marked to be rhadowed. If A is true, then B is the only satisfiable literal,
hence B is true and shadowed. If A were marked to be shadowed as well,
then if B is false, A is the only satisfiable literal, so A is false and shadowed.
Rules do not fire on predications while they are shadowed.

Figure 5.1 shows a simple example of how the conciseness and consistency
invariants are maintained in the history of a signal S. Each rectangle indicates
a predication and is positioned along the timeline according to the interval
that it refers to (each discrete time point is drawn as an interval on the
real line). Clauses are indicated by numbered circles; + indicates that the
attached literal occurs positively, - that it occurs negatively, and () indicates
shadowing. The network is constructed by the following series of operations:

1. Some outside client (the troubleshooting engine, for example) asserts
both [thru 1 9 S nil] and [thru 2 9 S t]. This violates consis-
tency and causes a conflict, represented by clause 1. The client retracts
[thn 1 9 S nil], which the TMS then makes false.

2. The client asserts [thru 10 19 S t], and since it overlaps with [thru
2 9 S t] (also true), TINT creates the new predication [thru 2 19
S t] and installs clause 2. Now [thru 2 19 S t] subsumes the two
predications it depends on, so TINT shadows them by installing clauses
3 and 4.

3. The client asserts [thru 6 17 S t], but it is immediately shadowed
because [thru 2 19 S t] subsumes it (clause 5).

Subsequent retractions and changes of truth value may trigger the cre-
ation of new maximal interval predications and new clauses. For example,
if the client were now to retract [thru 10 19 S t], the TMS would make
[thru 2 19 S t] go out, unshadowing [thru 2 9 S t] and [thru 12 17
S t]. Since the latter two overlap, TINT would then create a new predication
[thru 2 17 S t] to be created (not shown).

5.1. TINT 95

Figure 5.1: TINT Signal History Example

Time 0 1 "'2 19110111112 ... 120

truefalse [thru 1 9 S nil] [thru 10 19 S t] shadowed

true2shadoed [thru 2 9; S t]4
shadowed

[thruItJ tr]uhaoed

5.1.4 Equality

The behavior of simple components such as wires, buffers, and switches is
often easily expressed as a temporally quantified equality; for example, if a
switch is closed during the interval from ?1 to ?u then during that time the
logic-levels at its two terminals will be equal. Also, it is sometimes convenient
to give different names to the same signal, so equality between signals is a
useful notion as well. The four-place predicate tsame captures these concepts;
[team. ?l ?u ?s1 ?s21 means that the signals ?sl and ?s2 had the same
value at every time from ?l to ?u inclusive. In the case of different names
for the same signal ?1 and ?u are -oo and +oo respectively.

There are no rules with tsame as a trigger pattern, but TINT does have a
demon facility that is used to compute the transitive closure of the congruence
relation with respect to tsame assertions and unshadowed thru predications.

I -!I I ~

96 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

For example, if a is equal to b over the interval 5 to 10, then knowing the
value of b over any subinterval is propagated to an interval of a:

(tam. 5 15 a b]
[thru 0 10 b t]

[thru 5 10 a t]

The consequences of equality of signals a and b are also propagated to
their abstractions; hence if a value had been kuown for (S (f a)) it would
get propagated to (g (f b)) as well:

Etsa 5 15 a b]
Ethru 0 10 (S (f a)) nil]

[thru 5 10 (s C b)) nil]

This is a brute force technique in at least two respects. When two names
refer to the same signal, it would be better to maintain a single canonical
name for each signal, or in fact for each function and predicate term, as is
done for example in [McAllester80a]. In addition to this redundancy of facts
the scheme used in TINT also results in redundancy of derivationa, since
the same fact may be derivable in different ways simply by using equalities
and other rules in different orders. It would be better to control the invoca-
tion of rules so that fewer redundant derivations are created, as is done in
BREAD [Feldman88]. The brute force technique used in TINT is only toler-
able because the language is restricted to equalities between signals, and the
consequences are propagated only for thru predications. If arbitrary terms
could be equated, the number of variant terms would quickly explode.

5.1.5 Summary

TINT provides predicates, rules, and a framework of signals and abstractions
that together are used to describe circuit behavior. The preceding treatment
of TINT is brief because the language itself is not particularly important. The
main concern is the vocabulary of signal types and abstractions and the spe-
cific rules that the program will use to reason about them. The next three
sections will discuss in detail (i) the description and use of combinational

.II U I U I aII EU I ,U

5.1. TINT 97

(time-independent) behaviors, (ii) the description and use of sequential be-
havios, and (iii) abstiactions as embodied in TINT along with a particular
vocabulary of temporal abstractions.

A-_.

98 CHAPTER 5. REPRRSENTIN CIRCUIT BEHAVIOR

5.2 Combinational Behaviors

BASIL components have intended behaviors that are functions from signals
to signals, and these behaviors can be translated into rules. For example,
the intended behavior of a digital inverter is tinvert:

tinvert = (lambda () (lambda (time) (invert (S time))))

invert - (lamba (x) (it (- 1 x) 0 1))

This definition can be translated into a rule that asserts facts about the
output signal of the inverter based on facts about its input signals.

The intended behavior of a component depends on some collection of
background conditions - for example, that the component in question is
"working" (not physically damaged), that it is connected to a power source,
and so forth. The conditions currently included are those about signals
that travel over wires and that are expected to be stable over long periods
of time. The condition that there be a 5 volt drop from power to ground
is an example, the condition that a clock of a certain constant frequency be
provided is another. Conditions relating to other features, such as component
temperature, magnetic fields, alpha radiation, and so forth are not included
in the model. Failures arising from those sources will be misdiagnosed.

These background conditions must somehow be incorporated into the
rules. By convention, the background conditions for a component are col-
lected and summarized as a mode signal whose value is normal during the
intervals that all the conditions are satisfied.

For example, the following rule says that if an adder ?a is believed to be
working, then its mode is normal as long as it is getting power (the isa and
status-of predicates were defined and discussed in Chapter 4):

If isa ?a adder]
and [status-of ?a working]
and [thru ?l ?u (power (in power ?a)) t]

Then [thru ?1 ?u (mode ?a) normal]

The principal behavior rule for adders thus depends on the mode signal
having the value normal. In the following rule the signals (nua ...) de-
note the signals appearing at the adder ports (in 0 ?a), (in I ?a), and
(out 0 ?a):

S

* U I El.. *1 . . t I u n.

5.2. COMBINATIONAL BEHAVIORS 99

If [isa ?a adder]
and [thru ?11 ?ul (mode ?a) normal]
and [thru ?12 Tu2 (num (in 0 ?a)) ?vl]
and2 (overlap (?11 ?ul) (M12 ?u2))
and [tbru ?13 ?u3 (nun (in 1 fa)) ?v2]
and (overlap (?1 ?ul) ("12 ?u2) (?13 ?u3))

Then [thru (max ?11 ?12 ?13) (min ?ul ?u2 ?u3)
(nu- (out 0 ?a)) (4 ?vl ?v2)]

overlap tests whether the mentioned intervals have any point in common.
The proliferation of "time" variables (six, in this rule) and all the min/max

arithmetic on them may seem like an unfortunate feature of the syntax of
TINT. Certainly macros could be written for combinational rules that capture
the cliche "the intersection of all the input intervals must be nonempty," as in
the rule above. For presentation purposes, this has not been done since there
are many sequential behavior rules that defy such simple categorization. It
was deemed better to have one general and explicit style of rule presentation
than to have multiple incompatible styles.

There are two other rules arising from the behavior definition of the
adder, not corresponding to the input/output directionality of the compo-
nent. These will be called antibehaior rules to indicate that their direction
of firing is "against" that of causality in the intended behavior of the adder.
They look very much like the previous rule, the difference being that the
first one below makes deductions about (in 0 ?a) and the second about
(in 1 ?a):

If isa ?a adder]
and [thru ?21 ?uI (mode ?a) normal]
and [thru ?12 ?u2 (num (out 0 ?a)) ?vi
and (overlap (?1 ?ul) (?12 ?u2))
and [tbru ?13 ?u3 (nun (in 1 ?a)) ?v2J
and (overlap (M11 ?ul) (?12 ?u2) ('13 ?u3))

Then [thru (max ?11 ?12 ?13) (min ?ul ?u2 ?u3)
(nun (in 0 ?a)) (- ?v1 ?v2)J

2This condition is semantically redundant, but makes runtime rule matching more
efficient.

100 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

If [isa ?a adder]
and [thru 11 u (mod* ?a) ozual]
and (thru ?12 f?2 (mu (out 0 ?a)) ?v1]
and (overlap (?1 ?ul) (?12 ?u2))
and tbru ?13 vus (mum (in 0 ?a)) ?v23
and (overlap (?11 ?ul) (?1 u ?u2) (13 ?u3))

Then [thru (max ?11 ?12 ?13) (min ;ul Ih2 ?u3)
(n (in 0 ?a)) (- ?v1 ?v2)]

Figure 5.2 show. how these four rules concerning the adder cooperate to
infer signal values, and how they interact with the conciseness condition on
TINT signal histories. The network of thru predications shown was created
by the following operations:

1. The predications [status-of A working] and thru 1 80 (power
(in power A)) t] are true, so the mode rule of the adder fires and
results in the predication thru 1 80 (mode A) normal], supported
by clause 1.

2. The predications [thru 11 50 (nmu (in 0 A)) 7] and thru 21 60
(mrm (in 1 A)) 12] are true, so the behavior rule for the adder fires,
resulting in the predication [thru 21 60 (m-m (out 0 A)) 19] sup-
ported by clause 2.

3. The first of the antibehavior rules for the adder fires and deduces [thru
21 S0 (num (in 0 A)) 7] by clause 3, but it is shadowed (clause 4)
by the enclosing interval.

4. Similarly, the second antibehavior rule fires and deduces [thru 21 50
(num (in 1 A)) 12], which is immediately shadowed.

Were the newly deduced intervals not shadowed, the behavior rule for the
adder would fire one more time to deduce [thru 21 50 (nmu (out 0 A))
19] again. There is redundancy in this scheme, but without the conciseness
condition on signal histories it would be worse.

The behavior rules for the adder serve as a canonical example of the
combinational case - the output at any moment is solely a function of
its present inputs. The behavior of many other components appearing in

5.2. COMBINATIONAL BEHAVIORS 101

Figure 5.2: Combinational Behavior Example

I 10 lit-=o 12.-8o 181-6 141- 1 I - To I I

1 8 "I0

r e (* (sso

(power (in power A)) t

(status-of A working]1

(mode A) normal

i t so
11 50

(aim (in 0 A)) ,(num (in 0 A)) 4

21 (o) 0 so12-

12
21

(nun (out 0 W) 1

102 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

the Console Controller Board can be expressed in their entirety this way;

for other components, portions of their temporally abstract behaviors are

combinational in the same sense.

p :p i I I- Ip ,Wm U I m

5.3. SEQUENTIAL BEHAVIORS 103 -

5.3 Sequential Behaviors

The previous examples of behavior rules involved only combinational behav-
iors. Sequential behaviors require introducing signals to explicitly represent
the internal states of components. As with any program for reasoning about
change, TINT encounters the frame problem (McCarthy9], or, in more illu-
minating terminology, the initiation and persistence problems [Shoham86].

The initiation problem arises from the need to specify all the preconditions
for a given change or event to occur. The solution in TINT is to explicitly
represent whether a component is physically damaged and conditions on
incoming electrical signals, summarize them into a mods signal, and leave all
remaining background assumptions implicit.

The persistence problem arises from the need to specify all the conditions
under which nothing happens, that is, the conditions under which states do
not change over time. One formal solution is to have minimality criteria
(as in (Lifschitz87] and [Shoham86]) that specify which of many possible
extensions of an initial set of statements are preferred. An example of such
a minimality criterion is to prefer extensions that have the fewest number
of changes having no known cause. The validity of any particular prediction
is thus relative to many other predictions that have been or could be made.
The solution in TINT is to make explicit the persistence conditions for each
state. The result is a rule - a frame axiom - for every state signal that
mentions every kind of event that could change that state.

Neither of these solutions in TINT are general, since both rely on the
belief that each component interacts with few enough other components and
in few enough ways that they can all be listed explicitly. Nevertheless, they
do have the desirable property that all justifications for signal value predic-
tions are grounded solely in beliefs about the status of components and the
observations of the troubleshooter. Having made no appeal to persistence
assumptions or any minimality criteria while computing the consequences
of observations, each prediction has only local justifications and local conse-
quences. There is thus no need for the detection and manipulation of conflicts
to be any different than for combinational behaviors.

A falling-edge triggered register provides the simplest example of sequen-
tial behavior, involving only three rules. The first rule says that (a) the
output of the register is identical to its state, and that (b) changes from I to
0 on the clock input are "interesting:"

104 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

If [isa ?r register]
Then [tem -oo +oo (state ?r) (num (out 0 ?r))J
and [interesting-event (11 (in clk ?r)) (1 0)]

The value of the abstract signal (event ?from ?to ?s) is t whenever
there has been a change from the value ?from to ?to. The value of this
abstract signal is recorded explicitly only when that event type is marked as
"interesting." Further details will be presented shortly.

The second rule is a state-transition rule. Any change from I to 0 on the
clock input causes the register to enter the state selected by its data input
signal (nm (input 0 ?r)). The previous state of the register is irrelevant.
The rule below concludes that during (at least) the single moment succeeding
the transition, state had the value ?input:

If isa ?r register]
and [thru ?11 ?ul (mode ?r) normal]
and [thru ?12 ?u2 (event 1 0 (11 (in clk ?r))) t]
and (overlap (11 ?ul) (12 ?u2))
and [thru ?13 ?u3 (num (in 0 ?r)) ?inputJ
and (overlap (?1 ?ul) (12 ?u2) (?13 ?u3))

Then Ethru (+ 6 ?u2) (+ 6 ?u2) (state ?r) ?input]

The third rule is a persistence rule. The register stays in whatever state
it is in so long as there has been no change of the clock from 1 to 0. Its state
persists while the event is occurring as well, hence the appearance of 6 in the
conclusion:

If [isa ?r register]
and (thru ?M1 ?ul (mode ?r) normal]
and [thru ?12 ?u2 (event 1 0 (11 (in clk ?r))) nil]
and (overlap (Mli ?ul) (12 ?u2))
and [thru 13 ?u3 (state ?r) ?state]
and (<- (max M11 ?12) ?M3 (min ?ul ?u2))
and (not (and (a ?13 (max ?11 '12))

(- ?u3 (+ 6 (min tul f2)))))
Then (thru (max ?1 ?12) (+ 6 (min ?ul ?u2))

(state ?r) ?state]

5.3. SEQUENTIAL BEHAVIORS 105

Figure 5.3 shows these behavior rules in use. The signal denoted
(11 (in elk R)) is the clock input to a register R, and has a history of
values 1, then 0, then 1. The predications and clauses were constructed by
the following steps:

1. Because the change from 1 to 0 has been deemed interesting, the
predication [tbru 2 3 (11 (in clk R)) 13 results in clause 1 be-
ing installed, and similarly for the clauses 2, 4, and 5. Clause 6
is installed to enforce the conciseness condition on the history of
(event 1 0 (11 (in clk R))), and this subsequently results in some
predications being shadowed.

2. The transition rule for registers fires and results in clause 3 being in-
stalled: the mod. of the register was normal, the value at (in 0 R) was
known, and a falling edge occurred on the clock input. The conclusion
of the rule is [thru 5 5 (state R) 9].

3. The persistence rule then fires to create clause 7 and the predica-
tion [thru 5 9 (state R) 9], which in turn shadows [thru 5 5
(state R) 9] to ensure conciseness.

In general, transition rules deduce that a component must have been in a
state for just one moment, and the persistence rules subsequently deduce how
long that state must have lasted. The rules for the register are particularly
simple because at a transition the previous state of the register does not
matter; later examples consider cases where it does.

106 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR -

Figure 5.3: Example with Register Behavior Rules

time o1 23I i i
(mode R) normal

(11 (in cik R)) 1 01

1 245
+. +.4

nil t nil nil

(event 1.0....

nil

(num (in 0 R))

3

9

7
(state R)+

_I i ir _ I _ - ,I . i S

5.4. ABSTRACTIONS 107

5.4 Abstractions

The notion of an "abstraction" takes on a specific meaning in TINT as a
function from signals to signals. Behaviors are functions from signals to sig-
nals too, for example, tinvert represents the behavior of a boolean inverter.
Abstractions and behaviors are not syntactically identical in TINT by acci-
dent. Their similarity helps to illuminate the relationship between precision
and strength in behavior prediction. Given any abstraction A and behavior
B we can define a function AB that describes the abstracted behavior (Fig-
ure 5.4). I will usually be a partial function. As long as A is not a one-to-one
function, the predictions made by LB must be less precise than those by B.
Fidelity requires that any prediction made by AB must be the same as that
made by B; that is, let z -- (B x y) and then (A z) -- (A (B x y)):

For all times,
If ((AB (A x) (A y)) tim) is defined
Then ((A (B x y)) tim.) -- ((AB (A x) (A y)) time)

Figure 5.4: Abstractions and Behaviors

(A x) (Ay) (AB (Ax) (A y))

A (Az) -- (A (B x y))
A A

B hL
x y Tz

The strength of LB can be characterized by the degree to which AB is
a total function. Ideally, any prediction made by (A (B...)) will also be
made by AB, as stated below; weakness just means that there are fewer values
of z and y for which it holds:

For all tims,
If ((A (D z y)) time) is defined
Then ((A (B x y)) time) - ((I (A x) (A y)) time)

-f

108 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

For example, let A be the sign function that maps real numbers to
{-,O,+}, and let B be real addition. AB is the qualitative addition func-
tion qplus, which is partial because (AB + -) and (AB - +) are undefined
(Figure 5.5). AB in this case does not yield strong predictions.

Figure 5.5: Example of Abstractions and Behaviors

(ign x) (sign) qpl (qplus (sign x) (sign y))

Ltsg A~ sig (sign z) -- (sign (plus x y))(mln) sign sig

x y•z

Any behavior can be abstracted using any abstraction. Moreover, there is
no reason that the same abstraction A need be applied to all the signals x, y,
and z. However, for an arbitrary combination of behavior and abstractions,
any function AB is unlikely to be strong - that is, its result will be usually
undefined - and in fact nearly always useless. An alternative is to make
assumptions about the relationship between x and y such that AB is stronger
over the resulting restricted domains. In the case of qualitative addition, an
example would be to assume that (sign z) and (sign y) are never -, so
that the resulting restriction of qualitative addition became a total function.

Every behavior B can also be abstracted trivially to yield strong predic-
tions from the identity behavior I -- (lambda (I) I). The "trick" is to
have the abstraction of the inputs of B be the procedure B itself (Figure 5.6).
All the complexity of the behavior of B has simply been hidden in the ab-
straction of its inputs. Although this particular abstraction is silly, it is just
the extreme example of a more generally useful principle: in trying to formu-
late a useful behavioral abstraction, some of the behavioral complexity of B
can be shifted into the abstractions to make AB simple and strong.

An example is provided by the abstracted behavior of a 4-bit counter
that increments on falling edges of its input (Figure 5.7). By temporally ab-
stracting its input and carry-out output with respect to the number of falling

5.4. ABSTRACTIONS 109

Figure 5.6: Sufficiently Complex Abstractions Make Any Behavior Trivial

(a x y) k (I (B xy)) - z

AB Z) - z

x y •Z

edges on each signal, the counter can be viewed as dividing the abstracted
input by 16. The complicated definition of the abstraction "count of falling
edges" textually resembles the definition of the behavior of a counter, so in
this case it is in a quite literal sense that some of the behavior B has been
shifted into the abstraction A.

Figure 5.7: The Behavior of a Counter with Respect to a "Counting" Ab-

straction

divide

(A x) byl1 (I (A x) 16)

A -n - L (A z)
count of L
falling | A an

edges u count of4-bit /falling

Good abstractions are not just reformulations of behaviors. Ideally, one
has a small collection of abstractions that are appropriate to a wide range of
component behaviors - appropriate in the sense of (i) sacrificing precision,
(ii) retaining strength, and (iii) increasing efficiency. Given a particular ab-

110 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

straction function A, it is thus an interesting and relevant question to ask: for
what class of behaviors B it is possible to formulate easily computable and
strong abstract behaviors AB, or, failing that, what reasonable assumptions
can be made to strengthen AB. Thus characterizing the class of behaviors for
which the abstraction is appropriate is a concrete way of characterizing the
utility of the abstraction.

5.4.1 Temporal Abstractions

Temporal abstractions are abstractions whose definition mentions previous
values of a signal. An example is stay. (stay S) is true at time only if
the signal S has the same value at (- time 6) and tim. The particular
temporal abstractions to be shown have the additional property useful in
troubleshooting that they produce signals easy to observe in working and
malfunctioning circuits. Here, too, stay is an example: it is often easier to
observe whether a given signal is changing than it is to observe the value or
values that the signal is taking on.

The breadth of circuits for which these abstractions are appropriate can
be briefly characterized as those with behaviors that are event-preserving
functions of signals having known relative timing relationships. An event is
a change in the value of a signal. Behaviors are event-preserving to the extent
that changes on their input signals are reflected as changes on their outputs
(they include all one-to-one functions); three ways that input signals may
have a "known timing relationship" are:

1. Behaviors with single inputs, since the timing relationship of a signal
with itself is trivial.

2. Behaviors with multiple inputs, all but one of which are constant
throughout some interval. Example: the behavior of a two-input and-
gate, one of whose inputs is known to be a constant 1 during some
interval.

3. Behaviors with multiple inputs for which it can be assumed there are no
simultaneous events. Example: the behavior of a two-input xor-gate,
whose inputs never rise or fall at the same moment, so that the output
always changes whenever the input does. This is a particularly strong
assumption to make, and is rarely used.

5.4. ABSTRACTIONS 111

Having so severely bounded the class of behaviors for which temporal
abstractions are useful, it is tempting to conclude that the corresponding
class of digital (or other) components is so small as to be worthless. This
is not so, because it is possible to structurally compose groups of digital
components and define abstract signals in such a way that the behaviors of
the resulting aggregate components satisfy those tight requirements. Given
that freedom, the relevant class of digital circuit structures is so diverse as
to defy definition; it is only possible to present examples within that space.
After presenting some important temporal abstractions, the next section will
be devoted to just such examples. These important temporal abstractions
are change, duration, sequence, count, cycle, frequency, and sampling.

e Change marks events. The change function is t only at moments when
the underlying signal has just changed its value, otherwise it is nil.
Stay is the obvious negation (an example of the values of these signals
over time is shown below; it and others like it follow the convention
that 6 = 1, and that the more abstract the signal the closer it appears
to the top line).

(change X) ? t nil nil t
(stay X) ? nil t t nil

I 3 4 4 4 5
time 0 1 2 3 4

change --
(lambda (M)

(lambda (time)
(not (equal (S time) (S (- time 6))))))

Two familiar numeric elaborations of the change abstraction are dt
(derivative with respect to time) and cross (crossings of a value v),
defined in Appendix B.
It is also useful to have signals that are t whenever a particular
event has just occurred and nil otherwise. The abstract signal
(event ?from ?to ?S) is t whenever the underlying signal ?S has
just changed from ?from to ?to. For example, (event 500 700 S) is
t where S has just changed from 500 to 700:

112 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

(event :any So0) ? ? nil nil nil nil t
(event 600 700 S) ? ? nil t nil nil nil

s ? 500 500 700 300 700 500
tiM10 1 2 3 4 5 6

A ?from argument of :any denotes the special case of any transition
to ?to, which is useful for marking the known beginning of an interval.
(event :any 500 S) is t at time 6. However, it is not known to be t
at time 1 since the value of S could have been 500 at 0.

In the domain of troubleshooting circuit boards, it is much easier
to observe whether a given single-bit signal changed or not during
an interval of several seconds than it is to observe each individual
change. The abstraction changing with-reapect-to is specifically tai-
lored to making statements about whether a given logic level signal
ever changed, statements that typically arise from observations of the
circuit. (changing-wrt ?I ?u ?S) is t only at the upper bound time
?u and only when ?S changed at least once during the interval from ?1
to ?u inclusive:

(chaning-wrt 1 8 S) nil nil nil nil nil nil t nil
(changing-vrt 1 3 S) nil nil nil nil nil nil nil

(change S) ? nil nil nil t nil nil nil
S 0 0 0 0 1 1 1 1

time 0 1 2 3 4 5 6 7

For example, if thru 6 6 (changing-wrt 1 6 S) t] is true it means
that S changed at least once between times 0 and 6.

e Duration indicates how long a signal has stayed at the same value. The
duration is defined to be 6 when the signal has just changed.

(duration X) ? 1 2 1
X 3 4 4 5

4450

tili 1234

5.4. ABSTRACTIONS 113

* Count counts the number of events that have occurred with respect to
a window of fixed width. The function count-ww takes an argument n
that is the width of the window in units of 6, and a signal argument S.

(count-ww 3 S) ? ? 1 1 2 2 1 1 1
S t nil nil t t nil nil t nil

tim 10 1 2 3 4 5 6 7 8

" The Sequence abstraction indicates when a particular string of (possi-
bly repeated) values has appeared contiguously on a signal. Given a
sequence like (0 1) it can be thought of as a finite string recognizer
for occurrences of the regular expression 0+ 1+.

(sequenc '(0 1)S) nil nl nil t nil nil t nil t
S 0 1 1 0 0 1 0 1 0

time 10 1 2 3 4 5 6 7 8

" The Cycle abstraction is used to count the number of endings of a
particular sequence of values. The function cycles-wv is simply the
composition of the count and sequence abstractions:

(cycles-ww 3 '(0 1) S) ? ? ? 1 2 1 2 1 2
S10 1 0 1 0 1 0 1 0

time 0 1 2 3 4 5 6 7 8

Typically, the larger the window, the less relative fluctuation of
the cycle count over time. For example, suppose A and B are sig-
nals that are just slightly out of phase. (cycles-ww n ... A) and
(cycles-wv n ... B) will have the same value most of the time, and
will never differ by more than 1.

(cycles-wv8. A) 12 2 3 2 2 3 2 2 3
(cycles-w 8.. B) 2 3 2 2 3 2 2 3 2

(sequence.. A) nil nil t nil nil t nil nil t
(sequence B) nil t nil nil t nil nil t nil

time 10 1 2 3 4 5 6 7 8

114 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

The larger the window, the less the relative difference, and conversely,
the easier to detect significant deviations (as for example the difference
between a signal occasionally asserted and one that is running at about
20 Khs). By convention, the window size is usually taken to be 1000
times the expected period of the signal, so that the cycles-wv of a pair
of signals can be judged as equal if they differ by no more than -%,
that is, by no more than one cycle in a thousand.

" Frequency is simply the number of cycles that occurred during a win-
dow, divided by the duration of that window. The abstraction function
f w yields the frequency of a signal with respect to a window size and a
particular sequence of values. With a sufficiently large window relative
to the cycle time (e.g. 1000 times as large), the result is an adequate
approximation to the normal notion of "frequency."

(w ? ? 1/3 2/3 1/3 2/3 1/3 2/3
'(0 1) S)

S 0 1 0 1 0 1 0 1 0
time 10 1 2 3 4 5 6 7 8

Sometimes it is not necessary to know the actual frequency of a sig-
nal, but simply whether the signal is changing or not. This can be
represented as the sign of the frequency.

" The notion of Sampling is essential to understanding behavior of syn-
chronous systems; here, the sampling of a signal refers to the values
that the signal takes on at certain (usually regularly spaced) moments.
The abstraction function sample-and-hold (abbreviated sainp) takes
two argument signals V and S; V is t where the signal S is to sampled.
The value of samp is the value of S where V was last t:

(sap V S) ? 1 1 1 1 0 0 0
V nil t nil nil nil t nil nil
S 1 1 0 1 0. 0 0 1

time 0 1 2 3 4 5 6 7

Note that the value of (samp X X) - the sampling of a signal with itself
- at time is the value of I the last time I was non-nil.

5.4. ABSTRACTIONS 115

The interesting and important property of these temporal abstractions is
that they sacrifice precision without sacrificing the ability to detect faulty
behavior. In troubleshooting the idea is to detect discrepancies between the
observed behavior of the real device and our idealised model of it; thus the
predictions of interest are those that can be made efliciently from what we
have observed and that could be significantly violated if the device were bro-
ken. The change abstraction is useful because it is easy to observe whether
signals in a device are changing or not, and easy to predict what the con-
sequences of change (or lack of it) would be. Similarly, the frequency ab-
straction is useful even if frequencies are hard to observe accurately: the
distinction between zero and nonzero frequencies is easy to observe and is
likely to result in significantly different behavioral consequences. By summa-
rizing (possibly very long) sequences of events, temporal abstractions make
complex behaviors look simple enough for troubleshooting to be tractable.

Abstractions define how a signal such as (11 n48) (the logic level at
node 48) relates to signals "below" it such as (voltage n48), and signals
"above" it such as (i 106 ' (0 1) (11 n48)) (the frequency at node 48,
measured at cycles starting with 0 and with a window of 10' 6 time units).
Abstractions thus result in rules that can fire "upward," "downward," or
even "sideways" between different abstractions of the same base signal. The
definitions of change and stay, for example, can yield the following rules:

If [thru ?1 ?u (stay ?s) ?v
Then [thru ?1 ?u (change ?s) (not ?v)]

If tbru ?1 ?u (change ?s) ?vJ
Then (thru ? ?u (stay ?s) (not ?v)]

In practice, however, only a subset of the possible rules should actually
be made explicit and included in the program. For example, only one of the
signals (change S) and (stay S) really needs to be represented explicitly,
so these two rules are not necessary.

Furthermore, each rule should not be fired on every signal - for example,
the change abstraction applies in principle to every signal, but if every change
of value on the signal S required an explicit deduction about (change S),
an infinite regress would result - (change (change)), and so forth. The
changing-wrt abstraction is an example of the general phenomenon that for

116 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

any given signal there ae infinitely many abstractions that can applied to it.
For example, (changiw-art 1 5 S), (changing-wrt 2 T S), and so on,
are all legitimate signals. Some criterion is needed for determining which of
the many possible signals TINT will make deductions about. Consequences
concerning changi-wrt and similar abstractions are only propagated dur-
ing the interval during which observations are currently being made. TINT
denotes the interval over which observations are currently being made in
terms of the lower and upper bounds of a global reference interval. By con-
vention the pseudo-signal OR denotes this global reference timeline; it is t
during the interval that the circuit is actually observed. Thus, [thru ?a ?z
OR t] means that observations are made with respect to the time interval
?a to ?a inclusive. The interval ?a to ?z is referred to as the "observation
interval." The pattern [thru ?a ?z CR t] appeas in a rule to ensure that
it makes its deductions only during the current observation interval.

Furthermore, only certain signals in a circuit are actually observable.
Again by convention, the only observable signals are taken to be those at
the solder joints of a circuit board, which are modeled in BASIL as the ports
of wire etches. Ports of etches are called holes (chip pins are placed into
them), and (hole ?i ?*) denotes the ?ith in etch ?e. For efficiency, the
rules dealing with observations of signals are restricted to making inferences
at these ports.

The result of these conventions and efficiency considerations is that the
following four rules suffice to make inferences among a logic-level signal and
its change mad fww abstractions:

If the logic-level at a hole has a constant value over the interval from ?a
to ?z, then the signal was never changing with respect to a subinterval of
observation:

If [thru ?a ?z CR t]
and [thbu ?I ?u (11 (hole ?n ?o)) ?v]

and (<- ?l ?a ?z ?u)
Then [thru ?z ?z (changing-art ?a ft (11 (hole ?n ?e))) nil]

If the logic-level at a hole had two different values at different moments
during an observation interval ?a to ?z, then the signal is changing with
respect to that interval:

5.4. ABSTRACTIONS 117

If thzu ?a ?z OR t]
and [thu ?10 ?uO (11 (hole ?n 'e)) 0]
and (overlap (?a ?r) (?o ?uO))
and [thru ?l1 ?ul (11 (hole Tn ?e)) 1]
and (overlap (?a ?z) (?1 ?ul))

Then [thru ?x ?z (changing-wrt ?a ?z (II (hole ?n ?e))) tJ

The frequency of a signal with respect to a window ?w implies whether
or not it should be changing with respect to the observation interval ?a to
?z (provided that the window ?w fits within the observation interval); if the
frequency is nonsero then the signal should be changing, otherwise not:

If Cthu ?I ?u (tim ?w ?seq ?@) ?f]
and (thru ?a ?a OR t
and (-? ?a ?z ?u)
and (c= ?w (- ?z ?a))

Then [thru ?z ?z (changing-wrt ?a ?z ?s) (< 0 ?f)3

A signal that is not changing has a frequency of 0 with respect to any
window and sequence. The following rule says that if the logic-level signal
at a hole is not changing during an observation interval, its frequency is 0
during that interval. An additional condition is that there must have been
some previous mention of the frequency of that logic-level signal, otherwise
irrelevant frequencies would be deduced for many other signals:

If [thru ?z ?z (changing-mt ?a ?z (11 (hole ?n ?e)))]
and [thru ?a ?z OR t]
and' Signal (fwi ?w ?seq (11 (hole ?n ?))) exists

Then [thru ?a ?z (fwm ?w ?seq (11 (hole ?n ?e))) 0]

Finally, a noteworthy relationship that will appear implicitly in other
rules is that a signal ?s sampled with respect to some signal ?v cannot be
changing unless the underlying signals are: _ _

If Ethru ?z ?z (changing-wrt ?a ?z (samp (fall ?v) ?s)) t3
Then [thru ?z ?z (changing-wrt ?a ?z ?a) t]
and [thru ?z ?z (changing-wrt ?a ?z ?v) t]

"This trigger pattern is implemented with a predicate not mentioned elsewhere:
[cohistorical (fyi ?w ?soq (11 (hole ?n ?e)))]

118 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

Every signal has many possible (event ...) abstractions, but those
that will help other behavior rules to fire are worth making explicit deduc-
tions about. The predicate intoresting-event indicates which signals these
are. The predication [interesting-event ?s (?from ?to)] means that if
a change from ?from to ?to occurs on signal ?, then (event ?from ?to ?s)
should be t:

If [interesting-event ?signal (?from fto)]
and (thru ?11 ?ul ?sigma ?from)
and [thru ?12 ?u2 ?sign l ?to]
and (<= ?ul ?12 (+ 6 ?ul))

Then [thru ?12 ?12 (event ?from ?to ?signal) t]

When from is the token : any, (event : any to s) is t no matter what
the previous value of s was:

If (interesting-event ?signal (:any ?to)]
and [thru ?11 ?ul ?from ?xignvlj
and [thru ?12 ?u2 ?to ?signal]
and (not (equal ?from ?to))
and (<- ?ul ?12 (+ 6 ?ul))

Then Cthru ?12 ?12 t (event ?from ?to ?signal)]

Otherwise, (event ?from 'to ?) should be nil. For any interval dur-
ing which ?s was constant, either (i) s had the value ?from, in which case
there could not have been any such event:

If [interesting-event ?signal (?from ?to)]
and (not (eqi ?from :any))
and [thru ?l ?u ?a ?v]
and (equal ?v ?from)

Then (thru ?l ?u (event ?from ?to ?a) nil]

Or 4 , (ii) ?a had some value other than ?from, in which case no such event
could have happened during the interval starting 6 after the beginning and
ending 6 after the end:

4 The current implementation treats these two cases with a single rule.

5.4. ABSTRACTIONS 119

If [interesting-event ?signal (?from ?to)]
and (not (eql ?from :any))
and [thru ?I ?u ?u ?v]
and (not (equal ?v ?from))

Then (thru (+ 6 ?1) (+ 8 ?u) (event ?from ?to ?a) nil)

(Figure 5.3 on Page 106 showed the above rules about events in use.)

5.4.2 Composite Abstractions
Composite abstractions involve spatial as well as temporal abstraction. For
example, an eight-bit parallel signal is a composite of eight one-bit logic-level
signals. BASIL provides the predicate [corr ... 3 that indicates where a
port corresponds to an abstraction of one or more subports. Rules that con-
cern composite signals all trigger on occurrences of such correspondences. For
example, Ecorr ttl-power Z I Y1 means that there is a correspondence of
type ttl-power between the composite port Z and the two ports I and Y. The
type of the correspondence between the ports implies one or more abstraction
relationships between signals at those ports. The ttl-power correspondence,
for example, implies that the abstract signal (power Z) is equivalent to the
signal (one-and-zero (11 X) (11 T)), where:

one-end-zero m
(lambda (A B)

(lambda (time)
(and (oql (A time) 1) (eql (B time) 0))))

A power input of t is just shorthand for having the appropriate voltage
drop between the power and ground inputs to the device. The following rule
says that if a component has power then its power and ground are logic-levels
1 and 0 respectively:

If [corr ttl-power (in power ?a) ?p ?gI
and [thru ?l ?u (power (in power ?a)) t]

Then [thru ?l ?u (11 ?p) 1]
and [thru ?I ?u (11 ?g) 0-

A

120 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

In principle, rules could be written to enforce many relationships between
the composite signal and its subsignals; only & few concerning the temporal
abstraction frequency have yet been implemented.

The abstraction two-phase-clock, for example, yields rules relating the
frequency occurring on the two-phase clock to the frequencies of its subsig-
nals. If the frequency of a two-phase clock signal is nonzero then each of the
underlying signals have that same frequency. Since the underlying signals
are out of phase, one of them has its frequency measured with respect to
the cycle ' (0 1) and the other with respect to ' (1 0); which is which de-
pends on whether the two-phase clock frequency was measured with respect
to '(nil t) or ' (t nil):

If [corr two-phase-clock-encodin ?elk ?cl ?U2]
and [thru ?1 ?u (1w ?w ,(?b ft) (cc ?clk)) ?f]
and (< 0 ?:)

Then [thru ?l ?u (f1w ?w (it ?b '(1 0) '(0)) (11 ?ci)) ?f]
and [thru ?1 ?u (1w ?w (it ?b '(0 1) '(1 0)) (11 ?c2)) ?]

Conversely, if the frequency of either subsignal is sero then the frequency
of the composite signal is zero as well:

If [corr two-phase-clock-encoding ?clk ?cl ?c2]
and [thru ?1 ?u (1ww ?w '(?. ?b) (11 ?c2)) 0]

Then [thru ?1 ?u (fww ?w (if (eql 0 ?a) '(nil t) '(t nil))
(cc ?clk)) 0]

If [corr two-phase-clock-encodig ?elk ?ci c2]-
and [thru ?1 ?u (fww ?w '(?a ?b) (11 ?ci)) 0]

Then [thru ?1 ?u (fww ?w (if (eql I ?a) '(nil t) '(t nil))
(cc ?clk)) 0]

A similar relationship holds between a synchronous serial signal and the
pair of one-bit logic-level signals that comprise it, denoted by the correspon-
dence clocked-serial. In this case, the frequency of the serial signal - as
measured by the rate of zero-crossings - can be used to determine whether
the underlying logic-level signals are changing. The essential relationship is
that the frequency of zero crossings on the composite signal must be less
than the frequency of the underlying serial data signal sampled with respect
to the clock:

LPaia mnB N H m~mm

5.4. ABSTRACTIONS 121

e f corr clocked-serial ?s ?d ?3, then:

(fW W '(nil t)

(Ct W , (nil t) (change

(cross 0 (cs ?s))) < (sap
(fall (11 ?c))
(11 ?d))))

From the fact that both (11 ?c) and (11 ?d) must be changing for (samp
(fall (11 ?c)) (11 ?d)) to be changing, this relationship can be used to
form the following rule, which says that if the frequency of the composite
signal is positive during the observation interval, then both the clock and
data signals are changing:

If [corr clocked-serial ?s ?d ?c]
and [thru ?l ?u (fww ?w '(nil t) (cross 0 (cs 7s))) ?f3
and (< o ?f)
and Ethru ?a ?a OR t3
and (<n ?l ?a ?z ?u)

Then Ethru ?z ?a (changing-wrt ?a ?z (11 ?c)) t3
and Eth-u ?z ?z (changing-wrt ?a ?z (11 ?d)) t3

Conversely, if either of the underlying signals are not changing then the
frequency of the abstract signal must be zero:

If [corr clocked-serial ?s ?d ?c]
and Ethru ?I ?u (11 ?d) ?vJ

Then [thru ?l ?u (ivy ?w '(nil t) (cross 0 (cs ?s))) 0]

If Ecorr clocked-serial ?s ?d ?c]
and [thru ?l ?u (11 ?c) ?v]

Then [thru ?I ?u (is, ?w '(nil t) (cross 0 (c ?s))) 0]

A more complex version of the relationship between (cs ?s) and its
subsignals applies to multi-bit parallel buses. If the signal on an n-bit bus
is known to be changing in such a way that the different values it takes on
include both values below and above 2" ' , then the most significant bit must
be changing:

• - .m~wm m um m ml ule mmmm.&.um I~lllllm u mm - "- iq 1k

122 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

If [corr bus-with-csl-and-wrl ?bus
?cs ?wr ?sb . ?othsrs]

and [thru ?1 fu (fw fw '(nil t) (cross ?n (cp ?bus))) ?f]
and (< 0 ?f)
and (eql ?n (expt 2 (length ?others)))

Then [thru ?z ?z (changing-wrt ?a ?z (11 ?usb)) t]

The 12-bit bus in the Audio Decoder, for example, carries 12-bit values,
and if the frequency of crossings of 211 on that bus is nonzero, then the most
significant bit of the bus must be changing.

5.4.3 Summary of Abstractions

In TINT, abstractions are functions from signals to signals, and in principle
any abstraction can be applied to any signal or signals to produce yet another
signal. TINT can represent the time varying values of any of these signals,
and uses rules to make inferences about signals at other levels of abstraction.
Temporal abstractions are among the most useful because temporally ab-
stract signals are among the easiest for the troubleshooter to observe. Using
this as a guiding principle, the rules that map between levels of abstraction
are written for the most part so as to limit the inferences about signals to
those that are observable.

The real utility of the temporally abstract signals, however, is that it is
possible to reason about the behavior of circuit components using them. But
faced with a digital circuit and the above collection of temporal abstractions,
it is not always obvious how the behavior of the circuit should be described
with those abstractions, nor even which portions lend themselves to such
a description. This model-building process is not automated, but can be
metaphorically understood as "parsing" the circuit schematic: grouping com-
ponents into composite structures and abstracting signals, sometimes hiding
them completely. An essential ingredient of the parsing is "knowing what
the circuit is for," that is, its purpose. Heavy use of teleological knowledge
is made throughout the entire parsing description. The other essential ingre-
dient is "knowing what the model is for." The model is for troubleshooting,
and heavy use of that fact is made too. The four basic principles by which
behaviors are temporally abstracted are:

5.4. ABSTRACTIONS 123

1. Event Preservation - some component behaviors lend themselves to
temporal abstractions without modifications or new assumptions.

2. Reduction - a temporally abstract behavior that only covers part of
a component behavior is better than not covering any at all.

3. Synchronization - some digital circuits have signals that provide tim-
ing information, and the sampling abstraction can simplify the behavior
of components to which they are connected.

4. Encapsulation - after grouping components together, their combined
behavior may lend itself to temporal abstraction using the previous two
techniques even if the indivi'lual component behaviors did not.

These principles are treated individually in the following four sections.

. ..

124 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

5.5 Event Preservation

A behavior is event preserving to the extent that certain types of changes on
its input signals result in changes on its output signal. All one-to-one func-
tions are perfectly event preserving and result in abstracted behaviors that
are strong. The tinvert function that describes the behavior of a boolean
inverter is a simple example (Page 98). The tinvert behavior is event pre-
serving because it is a one-to-one function. Abstracting the behavior of a
one-to-one function with the abstraction stay always results in the identity
function. In particular, (stay (tinvert X)) -- (identity (stay X)).

The abstracted behavior identity with respect to stay is not by itself
a useful result, but similar derivations apply to the cycls-wv and f i ab-
stractions:

(cycles-wv n '(0 1) S) == (cycles-ww n '(1 0) (tinvert S))
(cycles-wv n '(1 0) S) == (cycles-wv n '(0 1) (tinvert S))

(fww n '(0 1) S) == (fvw n '(1 0) (tinvert S))
(fw n '(1 0) S) == (fww a '(0 1) (tinvert S))

The identity behavior that results from the fi w abstraction is useful be-
cause predictions about the frequencies of signals can be made over long
intervals of time, summarizing many underlying events without having to
refer to each one individually.

These relationships between the logic-levels at the inputs and outputs
of inverters are simple to encode in rules. The inverter has a rule (like all
boolean gates) that says if it is working and it has power, then its mode is
normal:

If lisa ?x inverter]
and [status-of ?x working)
and [thru ?l ?u (power (in power ?x)) t]

Then [thru ?l ?u (mode ?x) normal]

The behavior and antibehavior of the inverter can be captured in two
rules:

r * l......Will E..i ii, •1-

5.5. EVENT PRESERVATION 125

If lisa ?x inverter]
and [thru ?l ?ul (mods ?x) normal]
and [thru ?12 ?u2 (11 (in a ?z)) ?v]
and (overlap (?11 ?ul) (?12 ?u2))

Then [thxu (max ?1 ?12) (min ?ul ?u2)
(11 (out y ?X)) (- 1 ?v)]

If lisa ?z inverter]
and [thru Ml1 ?ul (mode ?z) normal)
and :thru ?12 ?u2 (11 (out y ?x)) ?v]
and (overlap (?lt ?ul) (?12 ?u2))

Then [thru (max ?M1 ?12) (min ?ul ?u2)
(11 (in a ?x)) (- 1 ?v)]

The behavior of the inverter, being a one-to-one function, is event pre-
serving, and there are potentially several temporal abstractions appropriate
for describing its behavior. Rules could be written for the inverter using the
abstractions change, stay, cycles, ivw and so forth, but changing-wrt is
chosen because it refers to easily observable abstract signals. The rule about
whether the signal is changing simply says that during the observation inter-
val, the output is changing if and only if the input is changing:

If lisa ?z inverter]
and [thru ?l ?u (mod* ?x) normal]
and [thru ?a ?z GR t]
and (<- ?l ?a ?z ?u)

Then [tsre ?I ?u (chaning-wrt ?a ?z (11 (in a ?x)))
(changing-wrt ?a ?z (11 (out y ?x)))]

An inverter can be used to implement a "frequency buffer." The input
and output frequencies of a frequency buffer are the same. However, when
the underlying signal has been inverted, incoming ' (0 1) cycles come out as

(1 0) cycles, and the rule must take this into account. The following rule
says that the frequency of the output with respect to a particular cycle is
the same as the frequency with respect to the inverse of that cycle; the rule
does not fire unless there has been some mention of the relevant input signal
frequency and cycle:

126 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

If [is& ?d frequency-buffor]
and [thru ?l ?ul (mode ?d) normal]
and Signal (fuw ?w I(?a ?b) (11 (in a ?d))) exists

Then [tam ?1 ?ul (fyw w '(?a ?b) (11 (in a ?d)))
(fiw ?w '(?b ?a) (11 (out y ?d)))]

A pair of inverters may also form a frequency buffer for a two-phase
clock signal. However, the effect of the inversion of the underlying signals is
to make the output cycle start a quarter phase later than the input cycle.
Over a large number of cycles the phase shift makes little difference in the
frequency. Thus the rule says that the frequencies of the cc signals at the
input and outputs are the same, provided that there has been some mention
of the input frequency:

If [isa ?d frequency-buffer]
and [thru 11 ?ul (mode ?d) normal]
and Signal (fww ?w ' (? :b) (cc (in a :d))) exists

Then [turns ?lM ?ul (fw ?w '(?a ?b) (cc (in a ?d)))
(fwi ?w '(?a ?b) (cc (out y ?d)))]

A larger and more interesting class of behaviors than one-to-one functions
are those for which a subset of input events always result in some output
event. For example, a toggle is a flip-flop that changes its state on every
falling edge of its clock input. This behavior can be described with the
function toggle, which is event preserving with respect to falling edges. Its
input, ranging over {0, 1}, has two possible events - rising and falling
edges. In any sequence of input events, a fixed subset (about half) will be
falling edges. Whenever a falling edge occurs on the input, the output has
either a rising or falling edge.

(toggle L) 0 1 1 1 1 0 0
L 1 0 0 1 1 0 0

time 10 1 2 3 4 5 6

It would be useful to have a strong temporally abstract version of the
toggle behavior; the problem is finding a temporal abstraction that will
work. stay does not work, but cycles-wi does. As noted earlier, any

, _ I I I l II I I I I , _ - -

5.5. EVENT PRESERVATION 127

behavior can be combined with any abstraction to yield an abstracted be-
havior. Unlike one-to-one functions, partially event preserving behaviors ab-
stracted with stay do not yield strong functions. For example, by a deriva-
tion similar to that for tinvert, all that can be shown is that for all times,
((stay S) time) -- ((stay (toggle S)) time), that is, the output never
changes if the input does not. This is not strong, because it makes no pre-
diction if the input is changing. Partially event preserving behaviors may,
however, yield strong functions when abstracted with temporal abstractions
other than stay. In the case of toggle in particular, the behavior derived
for the cycles-wv abstraction is a total function, by using the additional
fact that the value of S is 1 or 0 at all times: the count of occurrences of the
sequence 1-' (0 1) or 1=' (1 0) on the output is approximately half that on
the input5 :

(* 2 ((cycles-ww n I (togg e S)) time)) <
((cycles-Wv n 1 S) time) _<

(+ 1 (* 2 ((cycles-ww a I (toggle S)) time)))

By substitution using the definition of ifw, for a sufficiently large value
of n the following approximate relation holds at all times:

(0 2 ((fww n I (toggle S)) time)) -- ((ifw n 1 S) time)

Event preservation is not a property solely of a behavior; if the behavior
is not a one-to-one function it might be necessary to make use of additional
information about the input signal to the function. This may be either
through an assumption about the signal, or (as in the frequency divider
case) through an intrinsic property the signal possesses by virtue of its type.

toggle behaves as a divider with respect to the signal abstraction fvi;
components with the toggle behavior can thus be viewed as frequency di-
viders. Similarly, cascades of components having the toggle behavior -

counters, that is - can be viewed as frequency dividers as well, for divisions
by powers of 2.

'Briefy, the derivation considers four cases on 5: 1 followed by 1 at tlme, I followed
by 0 at sim, and so forth. By using the definition of toggle in each case it can oe shown
that (cycles-wv a 1 (toggls s)) must increment by at least I for every 2 increments
of the signal (Cycles-Wi a 1 5).

128 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

This is a useful way of viewing the behavior of toggles and counters be-
cause sometimes their inputs have known frequencies that are stable over
long intervals of time. One way that the frequency of the input signal could
be known over a long interval is if it the output of an oscillator. For exam-
ple, the crystal oscillator in the Console Controller Board generates a 9.8Mhz
signal. This is approximated as a frequency of 10" cycles per second, with a
window size of a thousand periods, that is, 1000 x ' seconds:

If [isa ?o oscillator]
and [thru ?l ?u (mode ?o) normal]

Then [thru ?l ?u (fWn 10-'sec ' (0 1) (11 (out 0 ?o))) 10]l

The behavior of the frequency divider allows the program to predict what
the output frequency will be over those same long intervals of time. Express-
ing its behavior in rules introduces some subtleties.

The first subtlety is that until now "power" has been the only input
that components required to be in normal mode. The frequency divider
requires a separate constant I input. For example, the Console Controller
Board contains several frequency dividers, implemented with one or more JK
flipflops or with counters, and one thing they all have in common is that they
have some of their inputs pulled up to a constant logic-level of 1. Figure 5.8
shows an example; the input (in hi FD) is tied to several JK fipflop inputs.
With both J and K tied to 1, the flipfiop toggles its state on each falling clock
edge, and with the Preset and Clear inputs tied to I this is the only way it
can change its state. The rule for the mode of the frequency divider thus
includes the condition that the input (11 (in hi ?d)) must be I:

If [isa ?d frequency-divider]
and [status-of ?d working]
and [thru ll ?ul (power (in power ?d)) t]
and [thru ?12 ?u2 (11 (in hi ?d)) 1]
and (overlap (Ml1 ?ui) (12 ?u2))

Then [thru (max M11 ?12) (min ?ul ?u2) (mode ?d) normal]

The second subtlety is that frequency dividers can be composed of a cas-
cade of toggle behaviors (a ripple counter can be viewed this way) and hence
have multiple outputs, which by convention are numbered from 0 upwards.
The frequency at the nth output is thus - that of the input.

5.5. EVENT PRESERVATION 129

Figure 5.8: Frequency Divider Implemented with JKFFs

(in hi IrD) P

(out I FD)

K C

(out 0 FD))

(in a FD)

The third and final subtlety is that signals at lower frequencies have longer
periods and hence require a longer duration to go through 1000 cycles; the
effect is that the window size at the nth output of a frequency divider scales
by 2"+. As a result, a single behavior rule for frequency dividers works for
any number of output ports, and makes deductions at different window sizes
on those different ports:

130 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

If [isa ?d frequency-divider]
and ihas-port ?d (out ?n ?d)]
and [thru ?10 ?uO normal (mode ?d)]
and [tru ?l ?ul ?t (fw ?w ?cyc (11 (in a ?d)))]
and (overlap (?o ?uO) (M1 ?ul))

Then [thru (max ?M1 ?12) (in ?ul ?u2)
(iv, (truncate (* ?w (expt 2 (+ I ?n))))

?cyc (11 (out ?n ?d)))
(/ ?f (ezpt 2 (1 ?n)))]

The antibehavior rule of the frequency divider is similar; the frequency
at input a is a multiple of that at any output and the window size of mea-
surement is a corresponding fraction.

Behaviorally, two-phase clock generators can be viewed as frequency di-
viders restricted to a single output that is a two-phase clock; indeed the same
physical component may be part of both a frequency divider and of a two-
phase clock generator. Their behavior rule says tlat the output frequency
is half that of the input, measured with a window size twice the size of the
input:

If ia. ?c two-phase-clock-generator]
and [tbru 1 ?ul (mode ?c) normal]
and [thru ?12 ?u2 (fw ?w '(0 1) (11 (in a ?c))) ?f]
and (overlap (M1l ?ul) (?12 ?u2))

Then [thru (max Ml1 ?12) (min ?ul ?u2)
(fwy (* 2 ?w) '(nil t) (cc (out y ?c)))
(I ?i 2)]

The ordinary behaviors of inverters and toggles in terms of moment-by-
moment changes of the logic levels at their inputs and outputs can be de-
scribed using TINT rules. Rules can also describe their behavior in terms
of whether those signals are changing or not and what their frequencies are.
Because these behaviors are event preserving, the rules and resulting predic-
tions are strong. Not all behaviors are event-preserving, however; the next
three sections present ways of using temporal abstractions in more general
situations. A

A-

5.6. REDUCTION 131 __

5.6 Reduction

Any function of n inputs with one of its inputs held constant yields a new
function of n - 1 inputs, and this fact can be used to form a temporally
abstracted behavior for a multiple input behavior under the special case of
its having one or more constant inputs. The resulting behavior is incomplete,
of course, in the sense that it does not cover cases in which the inputs are
not constant. It is nevertheless worthwhile because it provides an alternative
to the undesirable option of predicting all behavior at a temporally detailed
level: weak temporally abstract predictions are better than none.

A simple example is the behavior of a two-input AND gate (denoted
tand2) under the special case where one of its inputs is the constant signal
(lambda (tim) 1).

tand2 -

(lambda (A B) (lambda (tim) (logand (A time) (B tim))))

A straightforward derivation uses the fact that (logand 1 z) -- z to
show that if X -- (lambda (time) 1) then (tand2 X Y) =a Y.

The rules for the two-input AND gate (component type and2) are shown
here;, the pattern for OR, NAND, NOR, XOR, and so forth should be rela-
tively clear from these examples. It is tedious but straightforward to write
separate rules for gates of the same type but with different arities.

If any input of an AND gate is 0 then the output is 0:

If [isa ?x and2j
and [thru 7M1 ?ul (mode ?x) normalJ
and tbhru ?12 ?u2 (11 (in ?n ?z)) 0]
and (overlap (Mll ?ul) (12 ?u2))

Then [thru (max ?11 ?12) (min ?ul 'u2) (11 (out y Wx)) 0)

Note that one of the considerations in translating the definitions into
rules is that the rules should be written in such a way as to reference the
minimal sets of facts needed to make their conclusions. Hence sometimes
several rules will be used to represent a behavior that was captured with a
single function. This is because the troubleshooting engine will examine the
dependencies left by the rules to determine which components could have
been responsible for observed symptoms. Spurious dependencies make the

132 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

troubleshdoting engine waste effort working on components that could not
in fact have caused the symptoms.

The antibehavior rule for the AND-gate says that if the output is 1 then
all of the inputs must be 1:

If [ia ?z and2J
and [thru 1 ?ul (nod. ?z) nozal]
and [thru ?12 ?u2 (11 (out y ?z)) I
and (overlap (Ml1 ?ui) (?12 ?u2))
and (has-port ?z (in ?n ?z)]

Then [thru (max ?11 ?12) (min ?ul ?u2)
(11 (in ?n ?x)) 13,

Another rule for the AND gate says that with all but one of its inputs
held to 1, it acts as a bulfer. In the two-input case, this means that as long
as input ?n is I the output is the same as input (- 1 ?n):

If [isa ?z and2]
and [thru ?10 ?u0 (mod* ?z) normal]
and [thru M11 ?ul (11 (in ?n ?x)) 1]
and (overlap (?10 ?uO) (M1l ?ul))

Then [tsam. (max ?10 ?11) (min ?uO ?ul)
(11 (in (- I ?n) ?z)) (11 (out y ?z))]

The latter rule is interesting because the identity between the output
and free input will have consequences for any abstraction of either signal,
including temporal abstractions. The behavior of the AND gate with all
but one of its inputs 1 is one-to-one function that is event preserving just
like the inverter. Similarly the behavior of a NAND gate when all but one
of its inputs is I is just that of an inverter. Hence the temporally abstract
version of the NAND gate refers to the changing-wrt abstraction as does
the inverter rule:

5.6. REDUCTION 133

If lisa ?x nand23
and [thru Ml1 ?ul (modo ?z) normal]
and Ethru ?12 ?u2 (11 (in ?n ?x)) 1]'
and (thru ?a ?z OR t]
and (<- (max ?ll ?12) ?a ?z (min ?ul ?u2))

Then [team (max ?l ?12) (min ?ul ?u2)
(changing-wrt ?a ?a (11 (in (- 1 ?n) ?z)))
(changing-urt ?a ?z (11 (out y ?z)))]

As with the inverter, any of the abstractions change, stay, cycles, or
fww could have been chosen, but cbanging-wrt refers to easily observable
abstract signals.

The behavior rules of other components in the Console Controller Board
are similarly written in a style that makes explicit the event-preserving sub-
sets of their behavior. For example, the behavior of a JK flip-flop with all but
its clock input held to I becomes toggle, which as discussed earlier is par-
tially event preserving. Also, multiplexors are much like buffers, once their
select input is known. Their principal behavior rule equates the output
with whichever input signal is selected:

If lisa ?a multiplexor]
and [thru Ml1 ?ul (mode ?f) normal]
and [thru ?12 ?u2 (11 (in select ?a)) ?s]
and (overlap (?1 ?ul) (12 ?u2))

Thens tsam (max Ml1 ?12) (min ?ul ?u2)
(in ?s ?m) (out y ?m)I

In general by considering the special case of one or more input signals
constant, most behaviors can be reduced to an event-preserving behavior.
These restricted temporally abstract behaviors are ubiquitous in the model
of the Console Controller Board.

OThe predicate tsae can be used with ports as its third and fourth arguments, not
just signals.

134 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

5.7 Synchronization

As discussed earlier, temporal abstractions are useful for behaviors whose
inputs have known relative timing relationships. An important special case
of "known relative timing relationship" occurs when the input signal of some
behavior is a clock whose transitions indicate when the other input signals
are to be sampled. In that case, the samp abstraction can be used to form an
abstracted behavior that is more strongly event-preserving than the original.
In this section the idea will be used to derive a temporally abstract behavior
for a shift register, starting from the behavior of an ordinary register.

The behavior register describes the behavior of a falling-edge trig-
gered register; the falling edges of the clock input C capture the data D.
syn-register, the abstracted version of the register behavior, captures
the intuition that a register introduces a one-clock delay. Figure 5.9 shows
the relationships between the various signals.

Figure 5.9: Register Abstractions

syn-register behavior

(su-p (fall Clock) Data) _64 (su-p (fall Clock) Q)

(fall Clock)

Data Clock (* Q

register behavior

Forming the abstracted version sy-register involves several steps.
First, the clock signal is abstracted with fall. Second, samp is used to
abstract both the output and D input with respect to the falings of the
clock. Third, the function synchronous-delay generalizes samp by allowing
for arbitrary delays. Finally, the resulting abstracted behavior for the register

5.7. SYNCHRONIZATION 135

(syn-register) will be easily expressible using synchronous-delay.
An example to give some intuition behind these signals is given below.

The values at times 2 and 6, when data are latched into the register, are
most important. "10" is latched into the register and then "5":

(syn-del I
(sap (all c) d)) ? ? ? ? ? 10 10 10 10 5

(saup (all) d) ? 10 10 10 10 5 5 5 5 5

q -- (register o d) ? 10 10 10 10 5 5 5 5 5
d 9 10 5 6 5 5 5 4 4 5

(fall) nil t nil nil nil t nil nil nil t
c 1 0 0 1 1 0 0 1 1 0

time 0 1 2 3 4 5 6 7 8 9

The definition for synchronous-delay (abbreviated syn-del) resembles
that for samp, and in fact a delay of 0 is the same as sampling, that is,
(synchronous-delay 0 V S) -- (samp V S). The abstracted register be-
havior is then simply "a delay of one clock."

The point of expressing the behavior of the register using the sampling
abstraction is that the resulting behavior is more strongly event preserv-
ing than the lower level register behavior. In particular, register does
not preserve every change in the value of the input signal D; in the exam-
ple above, d changed from 5 to 6 and back to 5 in between falling edges
of the clock, hence those changes were not reflected on the output. The
synchronous-delay function - and hence the syn-register behavior of
which it is a special case - is mostly event preserving, even though it is not
one-to-one. The result is that the following inequality holds at all times for
any signals V and S: the number of changes at the output (sampled at V) is
within 1 of the number of changes at the input:

((count-wv n (change (samp V S))) time)
((count-ww n (change (syn-rogister V S))) time)
(+ 1 ((count-ww n (change (samp V S))) time))

136 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

This relationship can now be used to derive the temporally abstract shift
register behavior. A shift register configured to convert serial data to parallel
can be viewed as a cascade of one-bit registers all sharing a common clock
input. Figure 5.10 shows the signals S ', d0', dl', and d2 1; the components
labeled syn-reg compute dO' as a function of s', dl ' as a function of dO',
and so forth:

Figure 5.10: Shift Register as Cascade

8' == (samp (fall c) a)

dO' == (samp (fall c) dO)

dl' =m (cap (fall c) dl)

d2' = (samp (fall c) d2)

The behavior of a k-bit shift register can be expressed with respect to a
sampling signal as follows:

syn-shift-register mm

(lambda (k V S) (synchronous-delay k V S))

Hence the temporally abstract behavior of a k-bit shift register is simply
a variation of the inequality shown above for syn-register; the number of
changes that appear on the synchronous output is within k of the number of
changes on the synchronous input:

5.7. SYNCHRONIZATION 137

((count-wv n <
(change (syn-shift-register k V S))) time) -

((count-ww n (change (amp V s))) time) <
(+ k ((count-ww

(change (syn-shit-register k V))) time))

One of the consequences of this relationship is that if the incoming signal
to the register has a large enough frequency over a large enough interval,
then the output signals will have positive frequencies as well. Suppose it is
known that over some time interval, the frequency of changes on a signal was
(strictly) bounded below by a positive frequency 1:

I< ((fww W '(nil t) (change (samp V S))) time)

Then the number of changes during any window must be at least 1:

1 < ((count-wv w '(nil t) (change (samp V S))) tim)

Hence for any k > 1 the number of changes during a window of size
k x w is at least k (provided that k x w does not get bigger than the
interval during which the frequency was known):

((count-ww (* k w) '(nil t)
(change (camp V s))) time)

Using the previously derived bounds on the number of changes on the
outputs of the shift register, the kth output must have at least one change:

0< ((count-wv (* k w)
(change (syn-shift-reginter k V S))) time)

This derivation and its conditions can be summarized into a single rela-
tionship. If the incoming signal of the register has a large enough frequency
over a large enough interval, the output signals will have positive frequencies
as well; the relationship below makes "large enough" precise:

If (tww w '(nil t) (change V S)) is always > 1 from time I to
u, and k < (, then from time I + kw to u, (count-wv (* k w)

(change (syn-shift-registeZ k V S))) is always > 0.

138 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

The Audio Decoder contains two shift registers that accumulate incoming
serial data bits. Shift registers used in this fashion are referred to here as
clocked serial accumulators and the rules of their behavior are based on these
relationships. The temporally abstract behavior of a clocked serial accumu-
lator yields the following rules. The first rule infers from the fact that the
incoming byte stream is changing that all of the output data bits must be
changing:

If (isa ?csa clocked-serial-accumulator]
and [thru ?11 ?ul (mods ?csa) normal]
and [thru ?12 ?u2

(fww ?w '(nil t) (cross 0 (cs (in a ?csa)))) ?f]
and (< (1 ?w) ?f)
and (overlap (?11 ?ul) (?12 ?u2))
and [has-port ?csa (out ?k ?csa)]
and (< ?k (/ (- (min ?ul ?u2) (max ?11 ?12)) ?w))
and [thru ?a ?z GR t]
and (<- (+ (max ?11 ?12) (* ?k ?w)) ?a ?z (min ?ul ?u2))

Then [thru ?z ?z (changing-wrt ?a ?z (11 (out ?k ?csa))) t]

The second rule is inherited from an ordinary shift register. All but the
last output of a k-bit shift register is an input to the next stage; hence the
same relationship holds between output k and output k + j as held between
the input and output j; in particular, a changing input implies a changing
output, and vice versa. The following rule captures the fact that if output k
is observed to be changing then output k + 1 will, too:

If (isa ?csa clocked-serial-accualator
and [thru ?l ?u (mode ?csa) normal]
and [thru ?a ?z gr t]
and (<- ?l ?a ?z ?u)
and [thru ?z ?z (changing-irt ?a ?z (out ?k ?csa)) t]
and [has-port ?csa (out (?k 1) ?csa)]

Then [thru ?z ?z
(changing-irt ?a ?z (out (+ ?k 1) ?csa)) t]

The point of using temporal abstractions is to be able to make predictions
about component behaviors using simple observations. In this case, there is a

0

5.7. SYNCHRONIZATION 139

strong relationship between the number of changes of value on the input and
outputs of the shift register. If more than k changes are observed at the input
to the shift register, the temporally abstract behavior can derive bounds
on the number of changes that should be observed at its output without
requiring clock-by-clock reasoning. What made it possible in this example
was the aampling abstraction, which allowed us to represent synchronous
signals and thereby describe the behavior of a register as a component that
introduces a delay between signals.

140 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

5.8 Encapsulation

Sequential circuits are more dificult to reason about than combinational cir-
cuits. In general, predicting the response to a particular sequence of stimuli
may require explicitly representing every intervening state change. The more
complex the circuit behavior - that is, the more distinguishable states that
the circuit can be in - the greater the need for temporal abstractions to
simplify that reasoning. Up to this point in the discussion, examples of tern-
poraily abstract behaviors have all been either combinational circuits or very
simple sequential circuits such as shift registers. This section uses the previ-
ously discussed abstractions and abstraction techniques to develop examples
of temporally abstract behaviors for more complex sequential circuits. The
ideas being illustrated are simple:

1. The behavior of a group of components appearing in a loop can be
expressed as the composition of the component behaviors by introduc-
ing a new signal that represents the state of the aggregate component.
This encapsulation alone does not usually simplify reasoning about the
behavior of the loop.

2. The goal of abstracting the behavior of a sequential circuit is to collapse
together equivalent states in its state diagram - ideally down to a
single state so that the output of the circuit can be expressed directly
in terms of its inputs without the intervening "state" signal.

3. If the behavior of a sequential device involves performing computations
that are similar to counting, sampling, recognizing sequences, and so
forth, then a powerful way to simplify its behavior (that is, reduce
the number of distinguishable states) is to describe its inputs in terms
of corresponding temporal abstractions such as count, sample, and
sequence.

5.8.1 The Reset Hold Counter

The Reset Hold Counter circuit (Figure 5.11) from the Console Controller
Board is a simple example that illustrates the role of loop encapsulation in
deriving temporally abstract behaviors. When the Reset signal is asserted

5.8. ENCAPSULATION 141

and the clock signal Clock is running at k Hz, the Run signal is asserted for
at least L- seconds.

Figure 5.11: Reset Hold Counter

Reset I -

Clock FLYLFLFLLFLF LFLFLFLFLFFL-LFU

Msb

Clock

This circuit, containing a 14-bit counter, has at least 214 distinguishable
states, but by using the temporal abstractions it is possible to describe its
behavior using only three states. The intuition behind this is that if the
Clock input is known to be periodic, and it is known how long it has been
since the counter has been reset, then the state of the counter (and hence of
the circuit as a whole) is computable from the product of the clock frequency
and the length of time the Reset signal has been 1. The temporally abstract
behavior rh is derived at length in Appendix C.

This behavior can be described as a three-state automaton (Figure 5.12).
The automaton has one of each of three general kinds of transition conditions:
(i) transitions out of certain states caused by input events; (ii) transitions

142 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

that occur no matter what the previous state was; (iii) transitions arising
from being in a given state for a certain amount of time. The interaction
between these three kinds of transitions shows up as somewhat complex per-
sistence rules. Complex as it is, the encapsulation of the entire circuit along
with the fiequency temporal abstraction allows the resulting behavior to be
quite simple relative to the counter that underlies it.

Figure 5.12: Reset Hold Counter Three State Automaton
~~After 213

I IDown / e e ~ n

Resetese LinineD

The first transition rule says that when the reset input is 1, the com-
ponent goes into the Reset state. It is not necessary to know the previous
state nor the previous value of the input, so this rule is simpler than most
transition rules:

If [isa ?r reset-hold]
and [thru M ?ui (mode ?r) normal]
and [thru ?12 ?u2 (11 (in reset ?r)) 1]
and (<- (+ 6 (max l1 ?12)) (ain ?ul ?u2))

Then [thru (+ 6 (max Ml1 ?12)) (+ 6 (max i ?12))
(state ?r) Reset]

5.8. ENCAPSULATION 143 -

The persistence rule associated with the Reset state says that ?R stays
there as long as there are no changes from I to 0 on the reset input:

If [isa ?r resot-hold]
and [thru ?M1 ?ul (mode ?r) normal]
and [tha ?12 ?u2 (event 1 0 (11 (in reset ?r))) nil]
and (overlap (?l1 ?ul) (?12 ?u2))
and [tbru ?13 ?u3 (state ?r) Reset]
and (<- (maz Ml ?12) ?u2 (min ?ul ?u2))

Then [thin (max 11 ?12 ?13) (+ 6 (min ?ul ?u2))
(state ?r) ReSet]

From the Reset state, a change from I to 0 on the reset input causes a
transition to the Run state. Typical of most transition rules, the conclusion
is only warranted at the single moment after the input changed:

If lisa ?r reset-hold]
and [thru ?1 ?ul (mode ?r) normal]
and [thru ?12 ?u2 (event 1 0 (11 (in reset ?r))) t]
and (overlap (Ml1 ?ul) (?12 ?u2))
and [thru ?13 ?u3 (state ?r) Reset]
and (overlap (?11 ?ul) (?12 ?u2) (?13 ?u3))

Then [thin (+ 6 ?ul) (+ 8 ?ul) (state ?r) Run]

A separate persistence rule extends the Run state until the reset input
is asserted, or until 213 clock cycles have elapsed. Given a frequency of ?E,
2 '13 clock cycles elapse in 213 x 4 seconds:

P.

144 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

If [isa ?r reset-hold]
and [thru Ml1 ?ut (mode ?r) normal]
and [thru ?12 ?u2 (event 0 1 (11 (in reset ?r))) nil]
and (overlap (M1l ?ul) (12 ?u2))
and [thru ?13 ?u3 (fww ?w ?cyc (11 (in clk ?r))) ?f]
and (> ?f)
and (overlap (?1 ?ul) (12 ?u2) (13 ?u3))
and (thru ?14 ?u4 (event :any run (state ?r))]
and (overlap (Ml1 ?ul) (M12 ?u2) (M13 ?u3) (?14 ?u4))

Then [thru (max 11 ?12 ?13 ?14)
(+ 6 (min ((max M11 ?12 ?13 ?4) 213 X

(min ?ul ?u2 ?u3)))
(state ?r) R=3

A transition rule for the Run state makes the transition to the Stop state
happen when enough clock cycles have passed (that is, 213 Cycles):

If [isa ?r reset-hold]
and thru 1 ?ul (mode ?r) normal]
and [thru ?12 ?u2 (state ?r) R=3
and (overlap (?1 ?ul) (?12 ?u2))
and [thru ?13 ?u3 (fww ?w ?cyc (11 (in clk ?r))) ?f]
and (CU (I (I ?f) 21s) (- ?u2 '12))

Then Ethru (+ 6 ?u2) (6 ?u2) (state ?r) Stop]

Finally, the Stop state persists so long as no 0 to 1 changes occur on the
reset input:

If isa ?r reset-hold]
and Ethru Ml1 ?ul (mode ?r) normal]
and tthru ?12 ?u2 (event 0 1 (11 (in reset ?r))) nil]
and (overlap (?1 ?ul) (?12 ?u2))
and tthru ?13 ?u3 (state ?r) Stop]
and (overlap (?l1 ?ul) (?12 7u2) ('13 ?u3))

Then tthru (max ?1 ?12 ?13) (+ 6 (min ?ul ?u2))
(state ?r) Stop]

The behavior of the Reset Hold Counter can thus be expressed compactly
by representing the state of the counter implicitly with the frequency and
duration temporal abstractions.

5.8. ENCAPSULATION 145

5.8.2 The Audio Counter

The Audio Counter (Figure 5.13) bean obvious similarities to the Reset Hold
Counter discussed above, but it has subtle differences that lead to a differ-
ent temporally abstract behavior. The relevant temporal abstraction is the
lamp abstraction encountered earlier. Using this abstraction the temporally
abstract behavior of the encapsulated Audio Counter will resemble that of a
frequency divider.

Figure 5.13: Audio Counter

Clock -- L J UJ7 Jl- LFLI
Start

Nab -----

Load "---_._

4-b t M b +
14Counter

Counter starts at £1101110 Load
11101111 L
U1110000Lp

Finrohes at #00000000

144Counter

Start
L

p

Clock I !h

While the Reset input of the Reset Hold Counter starts the counter back
at 0 whenever asserted, in the Audio Counter only the first 1-to-0 transition

146 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

of the Start signal matters. Eighteen clock cycles must pass before the sero
state can be reached again: while counting, it is insensitive to the Start
signaL.

Some temporal abstractions that applied to earlier examples can be ap-
plied to the behavior of this circuit; however, the assumptions on which they
depend are violated by the normal usage of the circuit and so the result-
ing temporally abstract behaviors have little predictive force. For example,
while the signal Nab is a constant 1, the Audio Counter forms a frequency
divider with respect to the Clock input; however, the clocks come in bursts
of eighteen and normally the Start line goes low at least once per burst -
the "frequencies" are thus defined over so few cycles as to be useless. For
another example, the "counting" behavior of the Audio Counter can be cap-
tured by the product of a frequency and a duration, but only during the
bursts of eighteen clock cycles and hence this is similarly useless.

Appendix D shows the derivation of a behavior that is event-preserving:
n falling edges on the Start signal sampled with respect to falling edges of
the Clock will result in somewhere between 1IMJ and n falling edges on Nab.
Thus the number of falls on Nab (measured with respect to rising edges of
Clock) is bounded as follows:

((count-wv
n (fall (samp (rise Clock) Start))) tie)

((count-Wv
n (fall (samp (rise Clock) Nb))) time)

(floor

((count-w
n (fall (samp (rise Clock) Start))) tim)

18)

A similar inequality was derived earlier for the shift register, with the
consequence that a relationship could be defined between the frequency at
the input and at the output. A similar derivation for the eighteen-counter
results in a similar relationship. If the incoming signal of the counter has
a large enough frequency over a large enough interval, the output signals
will have positive frequencies as well; the relationship below makes "large
enough" precise:

P * * II I * 119 a1 . J-

5.8. ENCAPSULATION 147

* If (fw w '(nil t) (change V s)) is always > from time I to u,
and 18 < L!-A, then from time 1 + 18w to u, (count-wW (* 18 w)
(change (eighteen-counter V S))) is always > 0.

The relevant behavior rule thus looks very similar to the rule for the
accumulator; the difference is that the conditions under which it can be
deduced that a changing input will result in a changing output are more
restricted than for the accumulator:

If [isa ?cab clockod-serial-burst-detector]
and [thru 1l ?ul (mode ?cab) normal]
and [thru ?12 ?u2

(frw ?w '(nil t) (cross 0 (cs (in a ?cab)))) ?f]
and (< (I 1 ?W) ?f)
and (overlap (11 ?ul) (?12 ?u2))
and (< 18 (- (min ?ul ?u2) (max ?11 ?12)) ?w))
and [thru ?a ?z OR t]
and (<= (+ (max Ml1 ?12) (* 18 ?w)) ?a ?z (min ?ul ?u2))

Then [thru ?z ?z (changing-wrt ?a ?z (11 (out y ?cab))) t]

This temporally abstract behavior rule is useful because it uses simple
observations about signals to yield other easily observed predictions.

5.8.3 Microprocessors

The behavior of a microprocessor can in principle be represented as an enor-
mous finite state automaton. However, its behavior can be represented in
a temporally abstract way by characterizing its behavior in just two states:
Stop and Run. The Console Controller Board contains two eight-bit mi-
croprocessors, an Intel 8035 and an Intel 8741. These microprocessors run
instructions only when their incoming clocks are valid two-phase clocks of no
more than 5 Mhz. The abstraction two-phase-clock maps a pair of {1, 0}
signals to {t, nil), where t marks the end of a two-phase clock cycle. To be
in the Run state the processors must have their reset input unasserted and
the incoming clock signal be a valid two-phase clock with frequency less than
5 Mhz:

0 < ((fww n '(nil t) < 5.10
(two-phase-clock C5MhzH CSMhzL)) time) -

148 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

When not running they are in the Stop state and their outputs are idle.
In the Ran state some of their outputs are periodic. For example, In the Run
state of the 18035 with a 5 Mhz clock, the PSEN output runs at 50 Khb and
the ALE output at 300 Khs; these frequencies are asserted by a rule using
window sies corresponding to a thousand cycles of each signal:

If lisa 'i 18035]
and [thru ?I ?u (state :i) R=n]

Then [thru ?i ?u (hw 1000 x (1+ 300Kb)
'(0 1) (11 (out psen ?i))) 300 z]

and [thru ?1 ?u (: ww 1000 x (I + 50Khs)
'(0 1) (11 (out ale :i))) 50Khz]

Similarly, in its Run state the 1741 provides clocks and initialization
signals to the keyboard and keypad at frequencies in the neighborhood of
20Kb.

5.8.4 Abstract Buffers

The behavior of a single-input single-output buffer is the identity function: its
output at each moment is the same as its input. Since the identity function
is one-to-one, buffers are event preserving and lend themselves to temporally
abstract behavior descriptions. There are only a few buffers per se in a typical
digital circuit. On the other hand, digital circuits often have substantial
amounts of circuitry devoted to doing information-preserving transformations
of data from one encoding to another - from serial to parallel, for example.
At the right level of temporal abstract'on, modulo the nuances of the different
data formats, many seemingly complex circuits are really "buffers" in this
broader sense. Buffers thus appear in the Console Controller Board at various
levels of temporal abstraction. In the Audio Counter the Manchester-to-serial
converter, for example, is just a buffer when viewed with respect to incoming
(Manchester encoded) and outgoing (encoded serially with a clock) signals:

If [isa ?a .anchester-to-serial]
and [thru ?1 ?u (mode ?m) norml]

Then [tsas. ?1 ?u (manchester (in a ?u)) (cs (out y ?m))]

5.8. ENCAPSULATION 149

Similarly, the seial-to-parallel converter can be viewed as a buffer be-
tween byte streams encoded synchronously and serially (cs) and in parallel
(cp):

If [isa ?a serial-to-parallel]
and [thru ?1 ?u (mode ?s) nornalJ

Then [tsam ?1 ?u (cs (in data ?s)) (cp (out y ?))]

The behavior rules for buffer-like behaviors all deduce a tsame relation
between their inputs and outputs.

5.8.5 Programmed Microprocessors
Encapsulation and temporal abstraction can be applied to circuits containing
microprocessors. In doing so, the resulting behaviors collapse large state
transition diagrams into tiny ones and sacrifice a great deal of precision.
They are useful for troubleshooting because they allow predictions to be
made efficiently about temporally coarse features of signals. The behavior
model for the 8741 processor on the Console Controller Board, for example,
predicts little more than that if the processor is running, rolling the mouse
around will cause it to assert one of its outputs several hundred times a
second. Although very coarse, it is useful because (i) it is easy to distinguish
between that output being idle and being very active (ii) a significant fraction
of faults in the processor would cause that output to be idle, and (iii) it is
more efficient than reasoning about hundreds of identical events individually.
The examples will be presented by encapsulating the component behaviors in
bottom-up fashion, eventually constructing a behavior for a group of several
chips including two microprocessors.

(The material in the remainder of this section involves many details spe-
cific to the Console Controller Board; readers pressed for time may wish to
skip forward to Page 163.)

The temporally abstract behavior of U, the Input Processor, was used in
the Input Encoder troubleshooting examples (Figure 3.10 on Page 58 shows
the functional organization of the Input Encoder). U consists of the Intel 8741
microprocessor mentioned above, along with the onboard PROM that stores
its control program. Most of the behavior of U is simple enough to represent
usefully with temporal abstractions. With the right temporal abstractions

150 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

and assumptions about its incoming signals, its behavior can be expressed
as a combinational function of its inputs. The essential abstractions making
this possible are as follows:

" For troubleshooting purposes, the most important properties of the
incoming keyboard and mouse data signals can be concisely expressed
in terms of changes and rates of change.

* Although U sends all its output packets over a common eight-bit bus,
the rate at which different types of packets are sent is substantially dif-
ferent, and this can be taken advantage of in representing its temporally
abstract behavior.

The Keyboard and Keypad inputs are encoded serially and synchronously,
while the behavior of the Console Controller Board refers to changes in the
state of individual keys. Temporal abstractions are needed to map from
the low level encoding up to the level of changes in key positions. The
Keyboard signal is taken as the specific example; the Keypad signal is treated
analogously.

The full state of the keyboard - the position of every key - is trans-
mitted repeatedly to the Input Processor approximately a thousand times a
second. There are three digital signals that accomplish this, kbd-reset, kbd-
clock, and kbd-data. Figure 5.14 shows an example: the kbd-reset signal is
asserted to indicate that a new scan of the keyboard is beginning, kbd-clock
has one rising edge for each of 88 keys, and kbd-data is 0 wherever the cor-
responding key is pressed, in this case the key in the third position on the
keyboard. While all the keys are up the signal kbd-data is a constant 1.

Figure 5.14: The Third Key is Pressed

kbd-dataL....-

1 2 3 4 86 87 88
kbd-clock -JLJL_I L "L FL FL F-LFU
kbd-reset -..F - -.------------

The temporally abstracted signal kbd-state represents the accumulated
bits in each previous sequence of 88 clock cycles. The remaining abstraction

5.8. ENCAPSULATION 151

needed is to represent the signal in terms of changes of the state of the
keyboard, that is, of changes in the position of the keys. The signal kbd-
events represents that abstraction.

kbd-events nil... (Abort Down) nil
kbd-state 0 ... 512 0

time 10 ... 1000 1001 ...

These abstractions map from underlying serial signals up to a vocabulary
of events on individual keys. No further temporal abstractions are needed
for representing keys, since the rate at which keys can change is low enough
to be easily observable.

Like the keyboard inputs, the inputs from the mouse are encoded in a way
that is too low-level to be useful for troubleshooting; all that really needs to
be represented is whether the mouse is traveling in the z and y dimensions.
Again, temporal abstractions can map from the level of implementation up
to rates of travel. The movement of the mouse along the z axis is represented
using a 2-bit gray code on the (misleadingly named) signals mouse-left and
mouse-right. Each move by -L inch in the positive direction results in one
of the events (0 0) --1 (0 1) --+ (1 1) -4 (1 0) --+ (0 0); the reverse for
the negative direction. Hence the net travel (not the net change in position)
during an interval n yields the number of events. The temporally abstract
signals mouse-dx and mouse-dy are defined with an observation window size
of one second (since the mouse travels at up to 10 inches per second, hence
there are 1000 events per second, hence a one-second window is 1000 times
the typical period).

The behavior of U can now be expressed in terms of the signals just
described, namely, the temporally abstract clock, keyboard, and mouse in-
puts, along with the Reset input. While the Reset line is asserted the out-
puts of U are inactive. While the clock is running (that is, while the signal
(two-phase-clock CSMhzH CSMhzL) has frequency 5 Mhz) the 18741 waits
for events indicating mouse motions and keystrokes, and when such a event
occurs it asserts the interrupt line int, causing an interrupt cycle and ulti-
mately resulting in the transfer of a packet to C. The behavior of U thus
merges the various incoming events into a single outgoing stream of packets.
The output signal packets is defined so that it is nil everywhere except when
a packet is being transmitted, for example, ' (Local Down) to represent the

152 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

"local" key being pressed, ' (Mouse Right) to indicate that the mouse has
moved & inch to the right, and so forth.

The temporal scale at which mouse events and keyboard events occur and
their effects on the behavior of the Input Encoder are substantially different.
Mouse motion, for example, never changes the state of the Input Encoder,
while events of the "local" key change the behavior of Input Encoder dra-
matically. Furthermore, it is rarely the case that the mouse is rolled around
at the same time as the keyboard is being typed at - or at least this can
be guaranteed while troubleshooting. As a consequence, it is useful to define
the behavior of U under these different conditions at two different temporal
resolutions:

1. While the mouse is inactive, packets essentially merges the keyboard
and keypad events, with int being asserted once per packet.

2. While the keyboard and keypad are inactive, (tign (count-wv n
packets)) is just the (qualitative) sum of the mouse-dx and mouse-
dy inputs, with (tuign (count-ww n (fall int))) having the same
value.

Under conditions I and 2, U preserves events on the keyboard and mouse
inputs respectively; the different rates at which such events occur means that
different temporal abstractions are appropriate for representing the resulting
behavior.

The Input Processor U, like the 18741 that comprises it, has a Stop
and a Run state. The difference between the Input Processor and the
18741 is the level of abstraction of their inputs and outputs. The inputs
of U are the temporally abstract keyboard, keypad, and mouse inputs.
The incoming kbd-state signal that transmits the state of the keyboard ap-
pears at (ks (in kbd U)), and for the keypad at (ks (in kpd U)). The
keyboard-events abstraction applied to these signals yield, respectively,
the inputs (kt (in kbd U)) and (kt (in kpd U)). The signals mouse-
dx and mouse-dy transmitting the direction of mouse motion appears at
(mmx (in mouse U)) (along the z axis) and (mny (in mouse U)) (along
the y axis). The output of U is the interrupt signal INT. The salient rules
governing the behavior of the Input Processor are given below.

While in the Stop state (that is, while the reset line is asserted), the
INT output signal is a constant 1:

... -.. a . msmb ,. mmm mnn lm- . . .

5.8. ENCAPSULATION 153

If Eisa ?i input-processor]
and [thru. ?1 ?u (state ?i) Stop]

Then Ethru ?l ?u (11 (out int ?i)) 1]

While the mouse inp Ats are idle, each incoming keyboard or keypad event
results in the interrupt line being held low:

If [isa ?i input-processor]
and Ethru Ml ?ul (state ?i) Run]
and Ethru ?12 ?u2 (mm (in mouse ?i)) 0J
and (overlap (M1 ?u1) (?12 ?u2))
and Ethru ?l3 ?u3 (rnmy (in mouse ?i)) 0J
and (overlap Ml ?ul) (?12 ?u2) (?13 ?u3))
and Etbru ?14 ?u4 (kt (in kbd ?i)) ?kbdj
and (overlap Ml ?ul) (?12 ?u2) M?3 ?u3) (?14 ?u4))
and (thru ?15 ?u5 (kt (in kpd ?i)) ?kpd]
and (overlap Ml ?ul) M?2 ?u2)

(?13 ?u3) (?14 ?u4) (?15 ?u6))
Then [thru (max Ml ?12 ?13 ?14 ?15)

(min ?ui ?u2 ?u3 ?u4 ?u5)

(it (or ?kbd ?kpd) I 0)A

As long as no keyboard or keypad events occur, changes on the interrupt
line occur only when there is motion on the mouse inputs:

154 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

If [isa ?i input-processor]
and (thru 1 ?ul (state ?i) Ru]
and [thru ?12 ?u2 (kt (in kbd ?i)) nili]
and (overlap (?11 ?u1) (?12 ?u2))
and [thru 13 ?u3 (kt (in kpd ?i)) nil]
and (overlap (?l1 ?ui) (012 ?u2) (13 ?u3))
and [thru ?14 ?u4 (am (in mouse ?i)) ?mmx]
and (overlap (?1 ?ul) (?12 ?u2) (?13 ?u3) (?14 ?u4))
and [thru ?15 ?u5 (my (in mouse ?i)) ?fty]
and (overlap (?11 ?u1) (?12 ?u2) (?13 ?u3)

(?14 ?u4) (?5 ?u5))
and [thru ?a ?z GR t]
and (<- (max ?M1 ?12 ?13 ?14 ?16) ?a

?z (min ?ui ?u2 ?u3 ?u4 ?u5))
Then [thru (max M11 ?12 ?M3 ?14 ?15)

(min ?ul ?u2 ?u3 ?u4 ?uS)
(changing-wrt ?a ?z (11 (out int ?i)))
(oql '+ (qplus ?z= ?my))]

Finally, the Input Processor has an antibehavior rule that infers that the
Reset line must be 0 if there was a keyboard event but the interrupt line was
never asserted. This is a compression of a more complex line of reasoning
that would infer that it must have been in the Stop state:

If [isa ?i input-processor]
and [thru ?1 ?ul (mode ?i) normal]
and [thru ?12 ?u2 (11 (out int ?i)) 1)
and (overlap (11 ?ul) (?12 ?u2))
and [thru ?13 ?u3 (kt (in kbd ?i)) ?event]
and (overlap (?11 ?ul) (?12 ?u2) (?13 u3))
and (not (null ?event))

Then [thru (max ?1M ?12 ?13) (min ?ui ?u2 ?u3)
(11 (in reset ?i)) 0]

As noted at the beginning of this subsection, the temporally abstract be-
havior of U is a combinational function of its inputs. This was made possible
by temporal abstractions that (i) represented the incoming clocks in terms of
their frequency and relative phase (ii) represented the other inputs in terms

5.8. ENCAPSULATION 155

of their events and rate of events, and (iii) matched the rate at which certain
events occur. The resulting behavior exposes the simple, important, event-
preserving relationship between keystrokes, mouse motions, and activity on
the interrupt signal int.

The component C treated as a "black box" in the Input Encoder trou-
bleshooting examples has a similarly abstract behavior description. C is
actually the culmination of three intermediate levels of structural composi-
tion and behavioral abstraction. This behavior will be developed starting at
the lowest level. The first level of composition contains a loop that involves
an Intel 8035 microprocessor, a PROM, and two ancillary chips; the result
of that composition will be called P. There are three essential abstraction
steps:

1. The microprocessor communicates via a bidirectional bus, but this com-
plicates behavior descriptions; hence a distinction is made between the
incoming and outgoing signals of the microprocessor, sent along the
same bus at different times.

2. At the temporal scale of individual instructions, each address that the
microprocessor presents to the PROM depends on what the previously
returned instruction was. However, some of the outputs of the micro-
processor do not depend on the instructions being executed, and this
fact can be used to form useful temporal abstractions of the micropro-
cessor behavior.

3. Temporal abstractions can simplify the con posed behavior of the mi-
croprocessor and PROM down to only four states. This drastic simpli-
fication is possible because most of the time the Console Controller is
merely buffering incoming data from the keyboard and mouse.

Figure 5.15 shows the microprocessor 18035 and the components used to
present instruction addresses to the PROM (the original circuit schematic is
part of Page 60). The eight-bit bidirectional bus connected to the micropro-
cessor ports AD7-0 has been divided into an outgoing "address" signal A7-0
and an incoming "instruction" signal 17-0. The signals are valid at different
times in the basic instruction cycle of the 18035, and the abstract signals
shown are the results of a sampling abstraction with respect to the clocks
Cikl and Ctk2.

156 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

Figure 5.15: Functional Organization of Console Controller
Reset RD. WR. etc -----

=4 18035 - PROM
Clkl [A11-8

ALE Adr Latch Enabl
PSEN (Program Store Enable)

The structural composition of the 18035, PROM, and ancillary compo-
nents forms the component P, whose behavior is just that resulting from the
18035 executing the program stored in the PROM. The stored console control
program implements an idle loop that responds to interrupts from the Input
Processor by reading a packet and (usually) sending it on to the host. Some
sequences of keystroke packets are not sent on, but are intercepted and cause
the program to perform operations local to the console, such as changing
the brightness of the screen. Portions of the behavior of P can be described
in a temporally abstract way. For example, the eight bits of the main bus
over which the addresses and instructions are transmitted should never be
flat for more than a few clock cycles; similarly, during the idling loop of the
program the RD and WR signals are asserted periodically. For these signals,
(tsign (fwv n 'CO 1) ...)) is + while C is running. Although P has less
complex behavior than the microprocessor - it has fewer distinct states -

aside from these few signals it still does not lend itself to temporal abstrac-
tion; its interactions with U, for example, must be reasoned about at the
level of individual instructions.

P communicates with several slave components via a bidirectional bus,
but since most of these communications are one-way, it is useful to represent
the paths between the processor and each slave as a separate signal. This

5.8. ENCAPSULATION 157

abstraction is represented as a second level of composition that forms the
component B. B is a composition of P along with the addressing and tim-
ing circuitry that mediates these communications (Figure 5.16). The Audio
Decoder, Brightness and Loudness registers, and the Serial Encoder are all
write-only; the mode switches and Input Processor are read-only.

Figure 5.16: Components of B

Wel to
ZeAudio

ZWRT

to
Delay Brightness

to
Loudness

from p U R

Mode to
Switches (select- signals) Serial

Decoderl slc-sgas to
RD Switches

from to
Input Input
Processor Processor

Each of the input and output signals of P is a temporal slice of the
bidirectional bus that P communicates over. That is, it is the result of
sampling the bus at particular moments. To be specific, the value that the
abstract signal carries is the value being sent at the moment to the given
destination, and is otherwise nil. An example in which the value "20" is
being written to the brightness register is represented as:

158 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

to-brightness nil l nil 20 nil nil
zwrt 1 0 0 1 0 0

select-brightness 0 0 1 1 1 0
bus I? 20 20 20 20 ?

tin. 10 1 2 3 4 5

The signals to-audio, to-loudness, and from-switches are eight-bit integers
like to-brightness; the signals from-input-processor and to-serial carry "pack-
ets," to be defined below.

The third and final level of composition that forms C is a loop encapsu-
lation that combines B with the mode switches that control certain minor
aspects of its behavior. The switches are read from repeatedly during the
idle loop of P, hence this encapsulation results in some simplification of the
overall behavior.

The interrupt-response cycle that accomplishes the transmission of pack-
ets from component U to component C forms a loop (Figure 5.17). U inter-
rupts C by asserting its int signal, C responds by asserting RD; two eight-bit
words forming a packet are then transmitted from U to C as the signal pack-
ets. The combined behavior of these two components is complex, and there
may be hundreds of interrupt cycles for a single mouse motion. Encapsulat-
ing the loop as component E and using temporal abstractions can reduce the
behavioral complexity to manageable proportions. The temporal abstrac-
tions that apply to U and C individually have been discussed earlier; here
only the combined behavior of the two is considered. That behavior lends
itself to temporal abstractions that reduce it to only four distinct states (Fig-
ure 5.18). The four-state diagram arises as a consequence of the following
observations about U and about the instruction-level behavior of C:

1. The interrupt-cycle interaction between U and C is fully encapsulated
within E. Furthermore, it was shown that the behavior of U is event-
preserving and state-free under the right temporal abstractions. Hence
the behavior of E is mostly dependent on the state-transition behavior
of C.

2. Like many state machines, C has a "reset" input that puts it into Reset
state in which it does nothing. However, it also requires an initialization
procedure of about a hundred instructions before actually responding

5.8. ENCAPSULATION 159

Figure 5.17: Components U and C Together form Component E
5Mhz 5Mhz 10Mhz

.m to Serial

Keyboard - U nR C t u

Keypad to Brightness

Mouse Ipt pces Console to Loudness
Processor ControIe

Figure 5.18: State Diagram of E
After 100

Instructions

Init Monitor

ResetRRese
Reset Reset Local Lo ca l
Line Line Key p Key

Reset Line
Down

160 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

to any inputs. This instruction sequence can be treated as a separate
mit state.

3. C is fundamentally interrupt-driven; after being initialized, most of
the time it is waiting idly for interrupts. More important, after most
interrupts it returns to the same state as it had before. This suggests
that most of its behavior can be captured as a function of the most
recent input event, without any reference to earlier events. This is its
behavior in the Monitor state.

4. What behavior of C cannot be captured as a function of the most recent
event is capturable in terms of the counting and duration abstractions.
Such behaviors all occur in the Local state.

The behavior of E in each of its four states can now be discussed in more
detail.

While in the Reset state all of the outputs of E are held constant; to-
brightness, for example, is nil. E remains in this state as long as the reset
input is asserted (0).

The Tnit state is entered when the reset input becomes I and the fre-
quency of the two-phase clock input is greater than 0 and less than 5 Mhz.
E remains in the Tnit state for 600 cycles of the twp-phase clock input, since
there are about a hundred instructions and each requires six clock cycles.
There are a few output operations performed during the Init state: the
eight-bit brightness and loudness registers are set to an average value, and
an initialization sequence of some 40 bytes is sent to the Serial Encoder.
Thus, for example, the output signal to-brightness transmits the value 128
during the Init state, while the to-serial signal transmits the special token
init representing the initialization sequence of the Serial Encoder.

In the Monitor state, E behaves very much as U does: events on the
incoming keyboard and mouse inputs are converted to packets and sent to
the output, in this case the to-serial output. The sole exception is the
event ' (Local down), which is not transmitted but rather causes a state
transition to the Local state.

The complex behavior of E occurs during the Local state. Events on
the mouse are sent unchanged to to-Serial as in the Monitor state, but some
keystrokes cause activity on the to-Audio, to-Brightness, and to-Loudness out-
put signals.

5.8. ENCAPSULATION 161

The a key is used to produce a tone on the speaker. While the G key
is held down' the to-audio signal carries a repeating sequence of integers
forming a sinusoidal signal of frequency 1 Khz and of amplitude 128. For
troubleshooting, the important properties of this signal are crossings of its
midpoint value, both in its first and second derivatives (as introduced in
the Audio Decoder troubleshooting examples). The two temporally abstract
signals shown below both have the value "1 Khz" while G is pressed, and are
0 otherwise:

(fvy liSC '(nil t)
(cross 127 (saup to-Audio to-Audio)))

(fww lsec '(zil t)
(cross 0 (dt (samp to-Audio to-Audio))))

The B key is used to brighten the screen continuously, from 0 up to a
maximum brightness of 255. While the B key is held down, the to-Brightness
signal increases at a rate of 3msec per step until it reaches 255. Conversely,
the D key dims it. Just as the "counting" behavior of the Reset Hold Counter
could be expressed in terms of the duration abstraction, similarly the to-
brightness output can be expressed in terms of the lengths of time the B and
D keys have been pressed.

The I and Q keys work analagously to the B and D keys, sending to the to-
loudness signal and making subsequent audio signals louder (L) and quieter
(q).

The six rules for the Reset Hold Counter together implemented the three-
state automaton shown in Figure 5.12 (Page 142) - not an unusual ratio of
rules-to-states, since a typical state diagram will require roughly one tran-
sition rule per arc and one persistence rule per state. Writing the rules is
sufficiently tedious that a prerequisite to managing a large finite-state dia-
gram would be to develop machinery for automatically translating the graph
into rules. Because that has yet not been done, the temporally abstract be-
havior of the component E, with its four states and eight arcs, is the largest
behavior implemented to date. The transition and persistence rules for E
and its subcomponents are sufficiently similar to those for the Reset Hold
Counter that they will not be duplicated here.

'That is, while (aref (kbd-state time) (koy->pos 'G)) is 0.

162 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

This completes the temporally abstract behavior of E. The important
point is its simplicity - perhaps not simple in comparison with the simplic-
ity of the behavior of a boolean gate, but vastly simpler than the behaviors of
the underlying microprocessors. The simplicity arises from the fact that by
encapsulating the complex interacting state machines within a single compo-
nent and expressing the inputs and outputs with temporally abstract signals,
the result can be expressed with far fewer states. Yet it retains a useful degree
of predictive power: for example, it predicts that pressing the keys Local and
B will cause the brightness output to increase - a sufficient prediction that if
the brightness does not increase, the right suspects will be identified.

5.9. RELATED WORK 163

5.9 Related Work

There are numerous formalisms, languages and programs for reasoning about
time and change. For the present purpose it is sufficient to briefly identify
four salient expressiveness and tractability issues and to point out that TINT
takes an extreme position, always favoring tractability over expressiveness.

5.9.1 Temporally Quantified Statements

Systems that reason about time can in part be characterized in terms of
the kinds of facts that they allow to be temporally quantified. Some sys-
tems admit only statements about parameter values, where the parame-
ters may be either continuous or discrete quantities [Simmons83] [Bobrow85]
[Wiliams86] [Kohane87]. Treating propositions as boolean valued functions
(often called time tokens) allows any atomic proposition to be quantified
[Dean87] [Shoham871. There have been proposals to allow arbitrary first
order sentences to be temporally quantified [McDermott82] [Moszkowski82]
[Allen84], but there is no successful implementation of such a language. TINT
"signals" fall into the first of these categories.

5.9.2 Intervals and Constraints on Intervals

Timestamping facts so that they hold at single time points is the most prim-
itive form of temporal quantification, but this is hardly ever used except in a
theoretical setting [Hanks86] [Shoham86]. A slightly improved scheme is that
used in TINT and TCS [Russ86], in which statements hold over intervals with
fixed numeric upper and lower bounds. Discovering intersections between in-
tervals is trivial, but the expressiveness of such schemes is quite limited. One
fundamental difficulty is that systems with feedback can result in runaway
inference loops for which each new deduction only marginally extends the
previous history. The alternative is to allow algebraic constraints of varying
sophistication among the intervals on sparse and dense sets of points. The
straightforward approach is to do so with inequalities on the endpoints of the
intervals [Valdes86l [Williams86] (Kohane87] (Ladkin87]; a different approach
is to use an algebra of intervals IAnen83] [Vilain86] IValdes87]. With either
approach, there is a tradeoff between expressiveness and the tractability of
detecting interval overlaps; the more complex the constraints and the more

164 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

complete the constraint propagator, the weaker the performance guarantees
that can be made. Allen's constraint propagation scheme is a typical com-
promise: the propagator is O(n') in the number of intervals but will not
detect all inconsistent orderings, since the latter is NP-complete [Vilain86l.
As noted earlier, TINT takes an extreme position in favor of tractability,
thereby avoiding most of these issues. With fixed numeric bounds, detecting
overlap is trivial, and while runaway inferences cannot be prevented they are
at least easy to detect using bounds on the number of predications in each
history.

5.9.3 Persistence
The world has inertia. Many programs for maintaining temporal assertions
reflect this by building in implicit persistence of facts over time. For example,
TMM [Dean87] will autonomously assume the persistence of any fact in order
to answer queries. TINT and TCP [Wiiams86], on the other hand, do not;
only the application program can add underived facts about the duration of
intervals. The simple machinery in TINT never introduces new assumptions
on its own, and so as a consequence there is an explicit justification for every
prediction. This is just what is needed for troubleshooting.

5.9.4 Temporal Indexing

Database organization obviously has an impact on the kinds of queries that
will be answered efficiently. A recurrent concern in temporal reasoning pro-
grams is how a database of temporally quantified statements should be in-
dexed. A common approach is to organize all the intervals referring to a
single parameter, token, proposition, or signal into a totally ordered list
[Williams86] [Dean87]. An alternative is to organize the intervals into a
hierarchy such that all the intervals at the leaves occur close together in
time, irrespective of the propositions they refer to [Kahn77] [Dean87]. These
schemes are not incompatible; in fact most systems use a multiple indices
or a hybrid approach. TINT does not - it simply orders all the intervals
referring to a given signal by increasing lower bounds.

2

5.10. SUMMARY OF BEHAVIOR REPRESENTATION 165

5.10 Summary of Behavior Representation

TINT is a temporal reasoning system that propagates assertions about time-
varying values at multiple levels of abstraction. The framework of signals,
abstractions, and behaviors means that it can be very simple in its syntax,
semantics, and computational machinery. There are three key reasons that
TINT can be so simple and still allow the representation and troubleshooting
of complex circuits.

First, there is a rich vocabulary of temporal abstractions with which to
describe behavior. These temporal abstractions include such familiar con-
cepts as change, cycle, and frequency. Good abstractions for troubleshooting
preserve fidelity, strength, and efficiency by sacrificing precision. Temporal
abstractions are good for representing digital circuits for troubleshooting be-
cause they can make the prediction task much more efficient, while preserving
fidelity and precision for those signal properties that the troubleshooter can
easily observe and that will be disrupted by typical failures.

Second, there are principles by which temporally abstract behavior defi-
nitions can be built for many circuits. Temporal abstractions result in strong
abstract behaviors when the underlying behaviors ate event preserving. Since
not all components have behaviors that are not event preserving, the tech-
niques of reduction and synchronization are ways of taking subsets of behavior
that are event preserving. Encapsulating loops allows these former abstrac-
tion techniques to be applied to groups of connected components.

Third, there is an important distinction between the definitions of the be-
havior of individual components and the deductions that will be made about I
them during troubleshooting. There are many logical consequences of each
abstraction and behavior definition that would lead to useless deductions
during the prediction subtask of troubleshooting. TINT rules for each ab-
straction and behavior are included only when they make deductions about
observable signals or when the deductions about signal values that they make I
hold over significant stretches of time.

AI

.... . . .-- -- ,. w = .=,si, ra. s m~m mmm~ m m mm 4

Chapter 6

Representing Faults and
Misbehaviors

The goal of a troubleshooting program is not mere generation of candidates,
but efficient discrimination among them. However, there are three fu ndamen-
tal obstacles to efficient discrimination. First, the observations that the trou-
bleshooter makes of the device may be imprecise. As a consequence it may
be impossible to distinguish between some candidates. Second, some compo-
nent behaviors may be so complex as to be intractable to reason about in any
way other than from causes to effects. As a consequence the troubleshoot-
ing engine might not find all the conflicts derivable from the observations
it has made and hence inconsistent candidates may survive. Third, even if
reasoning from effects to causes is possible, there may be reasoning impasses
that leave ambiguities resolvable only through intractable techniquez. Again,
the troubleshooting engine may not find all the derivable conflicts, so that
inconsistent candidates may survive.

In the face of these fundamental difficulties a partial solution is to draw a
distinction between the possibility of a candidate and its plausibility relative
to other candidates. Instead of asking for the logically possible candidates, a
more realistic goal is to ask for the most likely candidates among those pos-
sible. The program can then terminate when any desired degree of certainty
is achieved, that is, after some diagnosis is significantly more likely than the
others. As an additional benefit, the choices about which observations to
perform will be more efficient because they will be biased toward discrimi-
nating between the most likely candidates, no matter what certainty is set as

166

I 615

0

167

the termination goal. There is always the danger that estimates of relative
likelihood will be inaccurate. It is possible that with bad estimates and a
low threshold of certainty for termination, the program could terminate with
an incorrect diagnosis. Commitment to using estimates of the likelihood of
candidates implies a commitment to being circumspect about any decisions
the program makes that are overly sensitive to those estimates. Nevertheless,
even giving candidates crude likelihood estimates can provide a useful degree
of bias.

Ranking candidates by their likelihood opens up new sources of knowledge
to take advantage of. An obvious source of knowledge concerns the relative
failure rates of the individual components in the candidates. These are ul-
timately grounded in accumulated statistical data but can also be partially
derived from knowledge about the physical construction of the components.
Another source of knowledge is fault models - knowledge not just about
how often components fail, but also about how they usually fail and their
misbehavior when they do. This kind of knowledge is used in a number of
model-based troubleshooting programs including SOPHIE [Brown82] and
IDS [Pan84].

In typical uses of fault models, each component has a set of misbehaviors
that is assumed to be exhaustive; candidates can be ruled out by showing
that none of their known misbehaviors are consistent with observations. But
the crucial point is that the program does not need to have an exhaustive set
of all the ways any given component can fail - it need not know any at all, in
fact. However, if knowledge is available about a component misbehavior that
can result from some physical failures and the proportion of failures in that
component that would result in that misbehavior, then the troubleshooting
engine can take advantage of it. By knowing one or two of the most likely
failure modes of a component the program can make a better estimate of
the likelihood that it is actually faulty. For example, suppose that telephone
jacks fail in dozens of different ways, but that when they fail, half of the time
the effect (the misbehavior) is as if all of the contacts were open circuits, and
the other half of the time the effects are different. This knowledge can be used
to adjust the likelihoods of candidates that hypothesize the jack is broken.
If the observations of the circuit indicate that it would be inconsistent for
all the contacts to be open then the jack is a relatively less likely, though
still a possible candidate. No coverage has been sacrificed. The program
has simply done what a human troubleshooter would do - it has brought

168 CHAPTER 6. REPRESENTING FAULTS AND MISBEHAVIORS

to bear knowledge about the way things usually break to focus on the most
likely possibilities.

Fault models, then, can be used as heuristics within a larger framework
of failure likelihoods. Although this chapter is mainly about fault models,
the first portion is spent presenting failure likelihoods as a partial solution
to difficulties in discriminating candidates. Next, syndromes are presented
as a refinement of that solution. Syndromes are the concrete representation
in BASIL and TINT for the abstract notion of a fault model. They are
added manually to the knowledge about a partic lar circuit; they are not
learned or otherwise automatically generated. Next, several principles for
the appropriate use of syndromes in representing circuits will be presented,
along with examples appearing in the Console Controller Board. Finally, the
consequences of using knowledge about syndromes in troubleshooting will be
discussed. The mechanics of ranking candidates by likelihood and for using
syndromes to adjust those rankings will be treated in the next chapter along
with other details of the troubleshooting engine.

6.1 Failure Likelihoods

Estimating failure probabilities in general is subtle and complex; a very sim-
ple framework is used here. For example, independence between failures is
assumed, a strong simplifying assumption (although not as strong as assum-
ing that filure effects are independent). This simple framework is adequate
because (as discussed later) the probabilities are used in such a way that the
overall performance of the troubleshooting engine is relatively insensitive to
small variations in these estimates.

The status of each BASIL component indicates whether it is believed
to be physically damaged. The status-of predicate denotes this: when
[status-of U25 working] is true means that chip U25 is believed to be
undamaged. The status other means that the component is believed to
be damaged in some way. A prior probability is assigned to the working
status for each component, and the probability of having status other is
then the difference between 1 and the probability of it working. As discussed
in Chapter 2, these prior probabilities influence the ranking of candidates
and probe suggestions produced by the troubleshooting engine: candidates
involving the components with higher probabilities of having status other

6.1. FAILURE LIKELIHOODS 169

will appear to be likelier candidates, and the probes that the troubleshooter
suggests will tend to be those that discriminate among the likelier candidates.

The probability of a given component working is estimated from its "com-
plexity" - a nonnegative integer representing the number of breakable phys-
ical parts and how likely they are to break. Assuming independence, the
probability of a component having status working is the probability that all
its components are working. The probability of failure in a component with
complexity 1 has been assigned .0001 - any number very close to 0 could
have been used. Some typical probabilities for various components are shown
below:

Component Complexity Probability of working
Etch 1 .99991 = .9999
Chiplet 1 .99991 = .9999
Pin 2 .99992 = .9998
16-pin Chip 33 .999933 .997
Oscillator 100 .99991,00 .99

Chiplet
ConsoleConoler 2000 .99992000 = .82Controllerl

There are better ways of estimating failure rates; the power dissipation
of the chip, for example, would probably be a better predictor. This scheme
has the advantage that it can be derived from the representation of physical
structure once a basic unit of complexity has beenchosen.

The prior probabilities assigned to each component status influence the
candidate rankings and probe suggestions. The likelihood of a candidate is
the normalized probability that all the components in the device have the
status assigned by that candidate. The Clock Generator provides a simple
example. Assume that etches and chiplets other than the oscillator have
complexity 0 so that their probability of working is 1.0; the three components
and their likelihoods are then:

Component Kind Complexity Probability of working
U25 Oscillator 100 p(U25) = .9900
U32 14 pin chip 28 p(U32) = .9972
U30 16 pin chip 32 p(U30) = .9968

1.0001 is actually too large, as can be seen from this anomaly. It is used only to simplify

presentation.

... i-~

IE U , n . I -

170 CHAPTER 6. REPRESENTING FAULT§ AND MISBEHAVIORS

Figure 6.1: Clock Generator

(out 0 u25a) (out y u25a) (out q u3Ob)

U5 ITU32a U30a U30b

Oscillator inverter JKFF JKFF

Chip U26 Chip U32 Chip U30

Suppose that a discrepancy is observed at (out q u3Ob), resulting in
the conflict (U25, U30, U32). The candidates are the minimal covering sets
[U25], [U30], and [U321. The probability of each of these candidates is the
probability that the named component is not working and that the others are.
A weight for each candidate is then computed as the probability normalized
with respect to all candidates:

Diagnosis Likelihood Weight
[U25] (I - ,(U25)) x p(U30) x p(U32) = .00989 .63
[U30] ,(u2s) x (1- p(uSo)) x r(uI2) = .00315 .20
[U32] ,(u2s) x p(uSo) x (1 - p(u32)) = .00278 .17

As this example shows, candidates involving components with relatively
higher failure likelihoods tend to end up with the largest weights. In this
case the rankings are stable under perturbations in the component failure
likelihoods so long as their ordering is maintained, that is, so long as the
physical complexity of U25 is greater than that of U30, and of U30 greater
than U32.

The troubleshooting engine can stop when there is one candidate above
some threshold, which is usually almost 1. The relative proportions of the
failure likelihoods among components can influence the decision to termi-
nate. In the example above, if the threshold were set to .90, the program
would terminate when one of the candidates had weight above .90. Had the

6.2. REPRESENTING SYNDROMES 171

physical complexity of U25 been 600 it would have had 90% of the weight
and the program would have stopped, concluding that U25 was most likely
to be broken. Note that it took more than an order of magnitude difference
between complexity estimates - 600 being nineteen times as large as the
complexity of U32 - to get this effect, however. Higher thresholds require
bigger relative differences - for example, a threshold of .95 would have re-
quired the complexity of U25 to be 1100 for termination without further
observations.

If no candidate is above threshold these candidate weights are used to help
decide where the next probe should be made. To a crude first approximation,
the choice of probe location will be biased toward places close to the higher
ranked candidates. For example, in the example above (out 0 u25a) would
be chosen over (out y u32a) as long as the complexity of U25 was greater
than that of U30. The details of probe selection will be presented later; the
important point for the moment is that the better the estimate of component
failure likelihoods the fewer probes will be needed on average in the long run.

Using failure likelihoods provides an incremental improvement in the abil-
ity of a troubleshooting engine to distinguish candidates. By presenting the
plausible candidates in addition to the possible ones and biasing the observa-
tions made in favor of the likely failures, the troubleshooting engine should
be able to provide the right diagnoses most of the time using fewer probes.

6.2 Representing Syndromes

Fault models provide an additional increment of power to the troubleshoot-
ing engine because they can be used to make better estimates of candidate
likelihoods. Roughly, this is done by (i) splitting the weight assigned to a
given candidate into portions, rne for each way that some component in that
candidate might be misbehaving, and (ii) showing that one or more of those
portions corresponds to an inconsistent diagnosis. If (ii) succeeds this means
that that component was not as likely to be broken as was thought. That
candidate will be made relatively less likely, thereby indirectly boosting the
other candidates. The details of how the troubleshooting engine performs
these steps will be presented in the next chapter. The present concern is the
representation of how components misbehave and how likely they are to do
SO.

172 CHAPTER 6. REPRESENTING FAULTS AND MISBEHAVIORS

A syndrome is a set of sets of physical failures that result in equivalent
misbehaviors of a component. Since the misbehavior of a component is rel-
ative to its intended behavior, each syndrome is thus tied implicitly to a
level of behavioral abstraction. For example, consider an imaginary chip
inverter-chip with four pins (power, ground, input, output) and just one
inverter on it. Some of the following are physical failures inside the chip: (a)
the puldown is open (b) the output pin is open (c) the pullup is shorted (d)
the puldown is shorted (e) the input pin is open. Three example syndromes
are:

1. Several different combinations of physical failures would cause the in-
verter to produce a constant output logic-level of 1. Its pulldown might
be open, its output pin might be open (since TTL floats high), its pull-
down might be open and its pullup shorted, and so on. This is the set
of sets {(a}, (b}, {a,c) ...

2. Another set of combinations of failures cause the inverter to produce
a constant logic-level of 0. Its input pin might be open, its pulldown
might be shorted, and so on. This is the set of sets {{el, {d}, ... 1.

3. Both sets of failures described above cause the inverter to produce
a constant frequency of 0. The union of those sets is thus another
syndrome. This is the set of sets {{a), {b), {a,c), {e}, {d} ... 1.
Although in principle syndromes can thus intersect, in practice the
syndromes for a given component are disjoint sets.

Syndromes are sets of sets of failures, but for mnemonic value they are
usually named according to the misbehavior that results. For example, syn-
drome 3 above, which caused the inverter-chip output frequency to be zero,
will be denoted zerof.

The status-of predicate is used to indicate the belief that a given com-
ponent has a particular syndrome. Thus [status-of i zerof] says that
component i has some physical failure among the set causing it to output a
constant frequency of zero. The status working corresponds to an empty set
of failures; the predication [status-of i working] says that the physical
component i has no failures and is working perfectly.

An estimated likelihood is assigned to each of the possible statuses
of a physical component, using the complexity eptimates introduced ear-
lier. For example, assume that pins have complxity 2 and everything else

6.2. REPRESENTING SYNDROMES 173

has complexity 0. Then the likelihood that the inverter-chip is working
is estimated as .9999s - the likelihood that all four pins are working.
The likelihood that the inverter-chip has syndrome zerof is estimated as
4 x ((1 - .99992) X .99991) - the likelihood that exactly one of the four
pins is independently broken. This is only an estimate, since on the one
hand there might be failures in the pins other than opens, but on the other
hand multiple pin failures that would cause the same syndrome are not being
counted. Finally, the likelihood that it has status other is then 1 minus the
likelihoods of these other two statuses:

Inverter-Chip
Syndrome Likelihood

working .9999's = .9992
zerof 4 x ((1 - .99992) x .99996) = .0007
other 1 - .9992 - .0007 = .0001

The troubleshooting engine can use this information to try to reduce
the likelihood of candidates involving inverter-chip components. Suppose
there were a candidate corresponding to a particular inverter-chip i being
broken. This candidate and its weight would be split into two portions -
one corresponding to the hypothesis that i had status zerof, the other to
the hypotheses that i had status other. Suppose its weight had been .40. To
a first approximation the weight would be split proportionately among these
two according to their relative likelihoods .0007 and .0001, in this case .35
and .05. Now, if observations indicate that i cannot have status zerof the
weight of that portion (.35) would get redistributed among all candidates.
For example, suppose there had been two other candidates each with weight
.30; after redistributing the weight .35 evenly across the three candidates,
two would have weights of .42 each and the candidate involving i would
have weight only .17. Thus the likelihood of i being broken relative to the
other candidates will have been decreased from .40 to .17. The details of how
this is done are presented in the next chapter.

To gain anything from a syndrome the behavior model must be able to
detect that it is inconsistent with observations that the troubleshooter has
made. Thus each component status has consequences in the behavior model.
Recall that if a physical component has the status working, has power, and so
on, then its mode is normal. In the case of the inverter-chip, for example:

174 CHAPTER 6. REPRESENTING FAULTS AND MISBEHAVIORS

If isa ?z inverter-chip]
and (status-of ?z working]
and [thru ?I ?u (power (in power ?x)) t]

Then [thru ?l ?u (mode ?x) normal]

Having a status of zerof, however, implies a mode of inactive no matter
whether the component has power or not:

If lisa ?z inverter-chip]
and [status-of ?x zerof]

Then [thru -oo +oo (mode ?x) inactive]

In the inactive mode the output frequency is zero:

If lisa ?z inverter-chip]
and [thru ?l ?u (mode ?x) inactive]
and Signal (fww ?w ?c (11 (out y ?x))) exists

Then [thru ?1 ?u (iwy ?w ?c (11 (out y ?x))) 0]

The indirection from the status of "zerof" to the mode of "inactive"
makes writing behavior rules more convenient. For one thing, the status
of a component has no temporal bounds, but the mode signal does. For
another thing, only physical components are given failure syndromes, while
only functional components have behaviors. Finally, there are other ways of
being in inactive mode, such as losing power:

If lisa ?x inverter-chip]
and [status-of ?z ?anything]
and Ethru ?1 ?u (power ?x) nil]

Then [thru ?l ?u (mode ?x) inactive]

The following section will clarify this by giving examples of several syn-
dromes and their associated misbehaviors.

6.3. PRINCIPLES FOR USING SYNDROMES 175

6.3 Principles for Using Syndromes

There are two situations in which it is advantageous to represent syndromes
and misbehaviors explicitly: (i) when there are functional components that
have faults with unusually high likelihoods, or (ii) when the resulting misbe-
havior is drastically simpler than the correct behavior.

Faults with high likelihood are worth including ezplicitly. It is useful to
know about very likely failures because if a particular component is one of
many suspected of failure, but (say) 99% of the failures in components of
that type produce a behavior other than the one being observed, then that
component is almost certainly not the culprit.

One of the most common failures in the field occurring in digital circuits is
the disconnection of a bonding wire. In BASIL, bonding wires are considered
part of pins. The effect of breaks in them is to make the pin act as an
open circuit. Thus one of the syndromes for pins is termed open, and its
behavioral impact is to make the currents into both ends of the pin be 0
(the signal (qci ?port) denotes the sign of the current into ?port and is
discussed in Appendix E):

If [conn ?pin (hole ?i ?o) ?port]
and [status-of ?pin open]

Then [thru -oo +oo (qci (hole ?i ?e)) 0]
and [thru -oo +oo (qci ?port) 0]

For example, if the externally visible node of this pin is connected to a
pullup and should be pulled down via this pin, and the node is at logic level
0, then the pin is probably not faulty. This is because if the pin were open,
the node would be pulled up to 1.

The likelihood of a pin working was earlier set to .99992 = .9998; the
likelihood of it having status open is set to .0002. This makes the other
status have likelihood 0:

Pin Status Likelihood
working 0.9998

open 0.0002
other 0.0

Moo

176 CHAPTER 6. REPRESENTING FAULTS AND MISBEHAVIORS

Thus the pin is an extreme example of a component with a "likely" syn-
drome - it accounts for 100% of the failures in pins. It is exceptional in
that respect, however; no other component has such a syndrome. The point
stands, however, that it is useful to know about just because it is so likely.

Faults that drastically simplify behamo ore worth including ezplicitly.
One kind of "drastic simplification" of behavior is when the faulty component
produces a constant output for all time, instead of responding to changes on
its inputs.

For example, a common failure is that crystal oscillators crack or become
loose in their casings; the result is that the output does not oscillate, but
instead stays constant:

If [ina ?o osciflator]
and [thru ?1 ?u (mods ?o) inactive]
and Signal (ivy ?w ?c (11 (out 0 ?o))) exists

Then [thru ?1 ?u (fro ?w ?c (11 (out 0 ?o))) 0]

Thus for example, if the output of the oscillator is active it is probably not
faulty. The syndromes and their likelihoods are based on the presumptions
that oscillators fail about 50 times as often as pins, and that there is a nonzero
likelihood that the oscillator may fail in other ways:

Oscillator Status Likelihood Description
working 0.99 = .9999'"

open 0.0099 = 100 x ((1 - .9999) x .9999")
other 0.0001

The syndrome is useful because the misbehavior that results is simple and
sufficiently different from what is expected that it does not require much ad-
ditional reasoning to detect whether it is consistent with observations or not.
Had the syndrome been that the oscillator (say) skipped every hundredth
cycle, a detailed model of behavior would have been required to represent
it, and the available observations would not have been able to distinguish it
anyway. Such misbehaviors are usually better dealt with at the lower levels
of physical and behavioral detail from which they originated.

Useful syndromes have both of these properties - common and simplify-
ing. In the case of the pin and oscillator these properties are achieved because
of the physical simplicity of the components. These properties can also be

- -b u w -m .u .g I m __ . _

6.3. PRINCIPLES FOR USING SYNDROMES 177

achieved in functional components with more internal structure and complex
behavior. Syndromes can have high likelihood if many internal faults produce
the same overall misbehavior. Faults can cause the behavior to be drastically
simplified if they dominate all the outputs of the component, or if they lie on
internal sequential feedback paths so that the effects of local misbehaviors
aggregate and cascade. Thus, if there are several faults that cause the same
misbehavior, and the misbehavior is simpler than the normal behavior - by
having fewer reachable states, for example - then those faults constitute a
useful syndrome.

Consider for example the burst detector in the Audio Decoder (Fig-
ure 6.2). Eighteen clock cycles after the start signal falls, the output Nab is
asserted for one cycle.

Figure 6.2: Audio Counter

4-bit -a

f14oa Counter
as I

Start-- L

L_ U20---P

Clock
U11

The internal structure of the burst detector involves three chips - two
four-bit counters U10 and U11, and a quad NOR gate chip U20. Any of the
three chips U10, U11, or U20 could fail in ways that prevent the burst detector

1

178 CHAPTER 6. REPRESENTING FAULTS AND MISBEHAVIORS

from ever starting to count, so that Nub would always be 0. For example,
there are three pins in U20 that if open would cause the Load signal to be
stuck at 1, the result being that counting would never start2 . Thus each of
the three chips has a syndrome denoted cub-inactive, and if any of them
have that status then the burst detector is inactive:

If [status-of ?u cub-inactive]
and (mmber ?u '(ulO ull u20))

Then [status-of csbO1 inactive]

If the burst detector is in inactive mode then both its outputs are 0:

If [isa ?cab clocked-serial-burst-detector
and (thru ?I ?u (mode ?cob) inactive]

Then [thru ?1 Vu (11 (out wr ?cab)) 0]
and [thru ?1 ?u (11 (out clk ?cub)) 0]

For each of the three chips, the likelihood of each syndrome occurring is
estimated from the likelihood of failures in the pins. For example, the likeli-
hood of U10 working is .999932, the likelihood that all 16 pins are working.
The likelihood of U 10 having syndrome csb-inact ive is 3 x (.0002 x .9999"),
the likelihood that the chip has exactly one of the three single-pin faults that
cause csb-inactive. The likelihood of other is just the residual:

U10 Status Likelihood Description
working 0.997 All 16 pins working

cub-inactive 0.0006 Any of 3 pins open
other 0.0024

For U11, there are 4 open pin faults that can cause the syndrome:

Ull Status Likelihood Description e
working 0.997 All 16 pins working

cub-inactive 0.0008 Any of 4 pins open
other 0.0022

For U20, 5 open pin faults can cause it:

3This was checked by SSIM, a simple event-driven digital simulator that uses BASIL
as its structure description language.

6.3. PRINCIPLES FOR USING SYNDROMES 179

U20 Status Likelihood Description
working 0.997 All 14 pins working

csb-inactive 0.001 Any of 5 open pins
other 0.002

The impact of this syndrome is that if it can be shown that it is inconsis-
tent for the clocked serial burst detector to be inactive, then the likelihoods
of candidates involving U10, Ull, and U20 will be reduced somewhat - each
by about one-fourth. The likelihoods of syndrome csb-inactive appearing
in each of the three chips do not differ by enough to have any significant im-
pact on the likelihoods of candidates containing U10, Ull, and U20 relative
to one another.

Another example in the Audio Decoder is the Manchester-to-serial de-
coder; it is a sequential circuit entirely encapsulated within the chip U 12.
When the chip U12 has status ts-inactive then MTS01 has status
inactive as a consequence:

If [status-of u12 mts-inactive]
Then [status-of atsol inactive]

In the inactive mode, t' a serially encoded output of MTS01 has zero
amplitude:

If lisa ?ets mmnchester-to-serial
and [thru ?1 ?u (mode ?mts) inactive]
and Signal (max-min-ww ?w (cs (out y ?uts))) exists

Then [thru ?1 ?u (max-min-uw ?w (cs (out y ?mts))) 0]

The likelihood of each syndrome for U12 is based on the fact that U12
has 20 pins, faults in 9 of which can cause the syndrome its-inactive:

U12 Status Likelihood Description
working .996 All 20 pins working

uts-inactive .0018 Any of 9 pins open
other .0022

180 CHAPTER 6. REPRESENTING FAULTS AND MISBEHAVIORS -

6.4 Consequences of Using Syndromes

By helping to discount unlikely misbehaviors, syndromes help a troubleshoot-
ing engine to ask for fewer observations, and this in turn makes troubleshoot-
ing complex digital circuits more feasible. For example, in the Audio Decoder
one of the cases requires 9 observations without syndromes to arrive at a
single-fault diagnosis, but 2 observations to arrive at the same diagnosis if
the syndromes are included. Since the cost of making observations is gener-
ally assumed to be greater than that of extra computation, even more modest
gains are worthwhile. The reduced number of observations is possible because
the syndromes reduce the relative likelihoods of faults in the Manchester-to-
serial converter and in the burst detector, and the troubleshooting engine is
generally biased away from suggesting observations in the vicinity of compo-
nents that are judged unlikely to be causing the observed symptoms.

Knowledge about how components misbehave is essential in troubleshoot-
ing complex circuits because the number of logically possible (but unlikely)
misbehaviors and the amount of detail in the observations needed to track
them down are so large. The effectiveness of fault models in providing focus
stems from two sources, one general and one specific to digital systems. First,
sometimes it is much easier to reason forward from causes to their effects than -

the reverse. The consequence is that it is easier to consider the ways a com-
ponent might plausibly misbehave and rule them out individually, than to
try and logically rule out all of them at once. Second, some behaviorally
complex digital components have many internal faults that all result in the
same few temporally abstract misbehaviors. The beneficial consequence is
that if these few misbehaviors can be ruled out, the complex component will
be judged an unlikely candidate.

As an example of the problems that result from the inability to reason
from effects to causes, consider Figure 6.3. It shows a microprocessor ded-
icated to running a program that multiplies the contents of two external
registers R1 and R2 and writes the result to R3. If the troubleshooter ob-
serves that the output register R3 has bit 3 consistently wrong, it will suggest
not only that this register might be broken, but that the microprocessor, the
read-only memory where its instructions are stored, the clock generator that
runs the processor, and so on, could all be broken. Intuitively, these other
candidates are implausible; it might be logically possible for the micropro-
cessor to be doing arithmetic incorrectly, or for the clock to be skipping

6.4. CONSEQUENCES OF USING SYNDROMES 181

Figure 6.3: Every Component is a Candidate

Bit 3 consistently wrong

Microprocessor ROM

Inputs are okay I

cycles, or for some instruction to be slightly wrong, but if these things were
happening the observed misbehavior would probably be much more drastic
than just the one wrong bit. For example, if the microprocessor is adding
numbers wrong it is likely to make a wild branch to a location containing an
illegal instruction. If it could be inferred from observations of the outputs of
the microprocessor that its instructions from the ROM were correct, or that
the clock output was correct, those candidates would not get proposed. But
logically speaking such inferences are unfounded, because it could in principle
happen that way - it is just very unlikely.

The microprocessor example also illustrates why knowledge about syn-
dromes is useful in complex digital circuits. A discrepancy at the output
of R3 in principle implicates the microprocessor, ROM, and clock generator,
and requires observations to determine whether the clock is running or not,
whether all the ROM locations have the right value, and so on. But experi-
enced human troubleshooters would examine the inputs and outputs of the
registers first - and probably find the problem there very quickly. Experi-
enced troubleshooters, upon seeing a digital circuit perform some function
correctly, tend to exonerate (at least temporarily) the complex portions of
the circuit. The usual expectation is that any failure there will result in
a catastrophic rather than a subtle misbehavior. Sequential circuits tend

182 CHAPTER 6. REPRESENTING FAULTS AND MISBEHAVIORS

to have "inactive" syndromes associated with them and because the circuit
did something, that syndrome was ruled out. In the present example, the
microprocessor gets exonerated because the output of register R3 is at least
changing. In other domains this heuristic might not work, for example in ana-
log domains in which failures usually have more subtle effects. The context,
however, is troubleshooting digital circuit boards, and many of the failures
there are not at all subtle.

The reason that digital circuits misbehave this way stems from aspects of
their design. Complex functions tend to get implemented in state machines
or as firmware for general processors. The circuits then use the same hard-
ware components over and over to implement different steps of the overall
computation, many of which depend on the previous step. Hence a per-
turbation caused by failure in any one unit of hardware rapidly cascades
and propagates its effects. The very economy of the design - the reuse of
hardware for different substeps of a complex behavior - means that after
many cycles the behavior will little resemble that intended. Since complex
components communicate with one another through protocols and languages
in which the meaningful message sequences occupy only a fraction of the
theoretically available bandwidth, when a component is intended to produce
a message sequence understandable by some other component, the message
will probably never get through. To extend the example, suppose the micro-
processor must initialise some slave hardware by setting up sixteen eight-bit
registers one at a time. If the master processor makes even one wild branch,
or one bit is stuck on the data bus, the likelihood that the slave got a correct
initialization message is rather slim.

Fault models are thus a powerful form of heuristic in troubleshooting
complex digital circuits, both because of the general property that they tend
to focus the model-based troubleshooting program on likely failures, and
because of the specific property that the design of the digital circuits means
that they can be treated as unlikely suspects if they perform even a portion
of their intended behavior. As the behavioral complexity of field replaceable
components increases, the more valuable this latter phenomenon becomes,
since the model-based troubleshooting program can thereby avoid having to
reason in detail about their internal structure and behavior.

6.5. SUMMARY OF FAULTS AND MISBEHAVIORS 183

6.5 Summary of Faults and Misbehaviors

Experience with model-based troubleshooting has shown that with increasing
behavioral complexity, approaches that avoid the use of fault models have
little utility in the real world because the problem of isolating a component
in the face of limited observability and behavioral complexity is often inher-
ently underconstrained [Hamscher84]. Ideally there is unlimited observabil-
ity, every component has behavior that is easy to manipulate algebraically,
and computation is so cheap that competing diagnoses can be discriminted
through computationally intensive techniques such as exhaustive case split-
ting over finite fields of values. For devices of any interesting complexity
these are not realistic approaches. A partial solution is to limit consider-
ation of diagnoses to those that are plausible, rather than considering all
that are logically possible. With this more limited goal, fault models can be
seen as heuristics for refining estimates of component failure likelihoods. In
BASIL and TINT, fault models are called syndromes, and have both physical
and functional aspects. The syndromes to be included for each component
type are chosen on the grounds of likelihood and simplicity: they should
account for a significant fraction of failures in components of that type, and
they should result in drastically simplified behaviors. While total reliance
on fault models for automated diagnosis has serious drawbacks, it does not
follow that they have no role in model-based troubleshooting. In the case of
digital circuits in particular, fault models turn out to be powerful heuristics
because the very design of complex digital systems means that fault effects
result in misbehaviors that are catastrophic, easy to detect, and easy to rule
out.

Chapter 7

Troubleshooting

The representations of structure and behavior discussed in earlier chapters
are heavily influenced by their intended use in model-based troubleshooting,
in particular, by their intended use with the troubleshooting engine XDE1 .
Like GDE [deKleer87], XDE works by (i) tagging each prediction made by
the behavior model with its set of supporting assumptions, (ii) recording
conflicts among the consequences of these assumptions, (iii) constructing the
set of candidates (some possibly indicating multiple faults) as the minimal
covering sets of those conflicts, and (iv) suggesting as the next observation
the one expected to most reduce the uncertainty among the set of candidates.

XDE extends this procedure by adding two new operations that can be
performed before suggesting new observations: decomposition, which enables
hierarchic diagnosis, and refinement, which enables the use of fault mod-
els. Decomposition and refinement are integrated into the procedure with
decomposition having priority over refinement, which in turn has priority
over probe selection. XDE constructs candidates that are assigned weights
according to their relative likelihood. Those with weight above 10% are el-
igible for refinement and decomposition. After each new observation, XDE
finds the most likely candidate and refines it. Refinement involves selecting
the most likely syndrome for a component believed faulty in that candidate,
and predicting the effects of that syndrome. If there is no such refinement
operation available, it decomposes a component instead. If no diagnosis is
eligible for this either, it suggests a probe.

'eXtended Diagnostic Engine.

184

7.1. CONFLICTS AND CANDIDATES 185

This chapter presents XDE and its interaction with the representation
choices made in the structure language BASIL and behavior language TINT.

7.1 Conflicts and Candidates

XDE inherits the terminology of assumptions, environments, conflicts, and
candidates from GDE, interacting with BASIL and TINT mainly through
status-of predications.

In TINT an assumption is a unit clause supporting one predication.
For example, let U32w denote the assumption that chip U32 has the sta-
tus "Working." U32w is a unit clause attached to the single predication
[status-of U32 working] (top of Figure 7.1).

Figure 7.1: Predications, Assumptions, and Environments

3 2 Assumption (unit clause)

[status-of U32 working] Label: { U32W}

Clause U32 working implies U32a working

[status-of u32a working] Label: { U32W}

Clause -]U32a working, etc, implies U32a mode is normal

Label: { x,y,z)

[thru ... (mode u32a) normal] ILabel: (U32W,~ ,y~z}

186 CHAPTER 7. TROUBLESHOOTING

Environments are sets of assumptions; for example, {U32w} is the en-
vironment in which chip U32 is assumed to be working. The predication
[status-of U32 working could be true in more than one environment,
and the set of environments in which it is true is called its label. For ex-
ample, there could be another assumption that the entire board is working;
[status-of U32 working] would be true also in the singleton environment
consisting of that assumption.

A clause is a disjunction of predications. When a clause is installed con-
necting two or more predications, some predications may become true in new
environments. For example, inverter chiplet U32a is part of chip U32. The
clause -[status-of U32 working] V [status-of U32a working] would
be installed (middle of Figure 7.1), since if U32 is working then all its sub-
parts including U32a must be working. Because of this clause, [status-of
U32a working] would become true in the environment {U32w}.

TINT rules fire on predications and make deductions in the form of (usu-
ally new) predications. Each firing results in the installation of a clause
connecting the old predications to the new predication. For example, sup-
pose a rule fired to deduce that the mode of U25a was normal, and installed a
clause to that effect. The new predication would then be true in the environ-
ment that was a union of the environments of the old predications (bottom
of Figure 7.1). Ultimately, any consequence of assuming that U25 is working
will have some superset of the environment {U32w} in its label.

If TINT makes two different deductions about the value of a signal at
a certain time, a conflict is recorded. At least one of the assumptions un-
derlying those deductions must be false. The conflict is the union of the
environments of the contradictory deductions and is denoted (...). For ex-
ample, if a certain signal was supposed to be 10' in the environment {U25w,
U32w} but it was supposed to be 0 in the environment {U30w}, then the
union (U25w, U32w, U30w) is a conflict.

All of the assumptions that XDE makes are about the statuses of physical
components, hence all the candidates that it produces are sets of physical
components corresponding to repairs. For example, if the above conflict were
the only conflict known, then the candidates are its minimal covering sets
[U25w], [U32w], and [T30w]. At least one of the chips U25, U32, or U30
needs to be replaced.

P II P U - III I I P I- I'EU ,. ~ -

7.2. DECOMPOSITION 187

7.2 Decomposition

In hierarchic diagnosis, a component suspected of being faulty can be de-
composed to reveal its subcomponents. The decomposition of a component
involves two conceptually separate operations: (i) firing the behavior rules
for the subcomponents, which usually refer to signals at a different level of
abstraction than that of their parent, and (ii) making the troubleshooting en-
gine entertain fault hypotheses about each individual subcomponent, rather
than about the parent. In traditional hierarchic diagnosis these two opera-
tions are usually considered identical. That works fine within a single strict
hierarchy, as in HT [Davis84] and DART [Genesereth84]. To deal with the
physical and functional hierarchies in BASIL, however, it is advantageous to
draw a distinction between the two operations.

To make the TINT behavior rules for a certain component fire requires
creating an explicit status-of predication for it. This operation is called in-
stantiation. Instantiating inverter U32a, for example, creates the predication
[status-of U32a working]. Rules about the mode and behavior of U32a
will only fire after [status-of U32a working] becomes true. Since U32a
is a part of chip U32, if U32 is believed to be working then U32a should be
believed to be working too. Thus a clause linking the two is installed, as illus-
trated earlier in Figure 7.1. Also, the parent component should be believed
to be working if all its subcomponents are. When all of the subcomponents
of a parent component have been instantiated, another clause is installed
that makes the parent status-of predication true if all the subcomponent
status-of predications are.

After instantiating all of the subcomponents of a parent component, XDE
will not construct candidates involving those subcomponents until an as-
sumption (unit clause) has been created for each of them. After being cre-
ated these new assumptions will then appear in the labels of some predictions
about the behavior of the device, will appear in conflicts, and thus will ap-
pear in candidates. The parent component will have the status working in
the environment consisting of all the assumptions about its subcomponents
(unless that environment is itself a conflict). Any assumptions about the
original parent component are no longer needed and can be deleted2 . This

'The binary clauses of the form -'parent V child are deleted too, a detail that improves
the efficiency of the TMS.

188 CHAPTER 7. TROUBLESHOOTING

operation is called assumption splitting - any assumptions about the status
of a component are deleted and one assumption is created for each of its
instantiated subcomponents.

Suppose devices were represented using only one component hierarchy.
If a top-level component were a candidate, then its subcomponents would
be instantiated and some rules would run. Then the assumption that the
component is working would be split and new conflicts would be discovered
involving its subcomponents. Some of the subcomponents would then ap-
pear in candidates. Each of these could then be treated recursively - their
subcomponents instantiated and their assumptions split.

It is helpful for all the assumptions present at any moment to be in-
dependent, since this simplifies candidate ranking. If the hierarchy is not
guaranteed to be strict, it takes extra work to ensure that each pair of as-
sumptions is independent, since any pair of assumptions might refer to two
components that share subparts. If the hierarchy is strict, at each descend-
ing step it is easy to guarantee that this never happens. Thus it is useful to
locate assumptions only within strict part-of hierarchies.

Now suppose that there are two hierarchies and that there is no obvious
correspondence between nodes in the two. BASIL, for example, has physical
components and functional components in separate hierarchies that meet at
their leaves. Figures 7.2 through 7.4 show an example. There are two boards
A and B, each having several chips. Three of the chips on A and two of the
chips on B form a single four-bit adder. The four-bit adder is composed of
two two-bit adders tbl and tb2. Each two-bit adder is composed two full-
adders, each full-adder is composed of two half-adders and an OR gate, and
each half-adder is composed of an AND gate and an XOR gate. Each of the
full-adders fal through f&4 is distributed across three chips - a quad AND
gate chip, a quad XOR gate chip, and a quad OR gate chip.

In BASIL, assumptions about the status of components are attached to
physical components. This suggests that the diagnosis proceed top-down
through the physical hierarchy, always staying as high as possible. However,
TINT behavior rules are attached only to the components in the functional
hierarchy. While descending through the physical hierarchy, it makes sense
to fire the behavior rules for ever more detailed functional components. Since
there is no obvious correspondence between the components in the two hi-
erarchies (Figure 7.5), there is a coordination problem - how deep into the
functional hierarchy should components be instantiated for each newly split

7.2. DECOMPOSITION 189

Figure 7.2: Physical Organization of Four-Bit Adder

QA1 QX1 QO1 QA2 QX2

Board A Board B

Figure 7.3: Functional Organization of Four-Bit Adder

o2o

fal fa2 W3.3 fU4
tbl tb2

190 CHAPTER 7. TROUBLESHOOTING

Figure 7.4: Physical and Functional Organizations

faltb2

QA I QX1 Q01 QA2 Q

Board A Board B

assumption in the physical hierarchy?
For each physical component, there is some functional component that

fully contains it. For example, chips QAI and QX1 are fully contained within
the two-bit adder tbl. Chip QOl is fully contained only within the whole
four-bit adder. When chip QA1 has an assumption attached to it so that it
can appear in diagnoses, rules should at least be getting run for every com-
ponent that fully contains it. But this is not deep enough, since there would
never be enough behavioral detail to distinguish between diagnoses involv-
ing that physical component and others contained by the same functional
component. For example, if only the rules at the level of two-bit adders were
being run, there would be no way to detect a conflict in which QA1 appeared
but QXl did not. This is because QA1 and QX1 must both be working for
either of the two-bit adders to be working. Going one level deeper in the
functional hierarchy would not help - at the level of full-adders there is still
no way to find a conflict involving QA1 but not QX1, since both must be
working for full-adders fal and fa2 to work. Going one level deeper in the
physical hierarchy, however, would help- with QAl is assumed to be work-
ing, rules would be run for any components that fully contain any of its

7.2. DECOMPOSITION 191

Figure 7.5: Physical and Functional Decompositions of the Four-Bit Adder

fpart-of
adder

ppart-of tbl tb2

ROWr A Board B

QAI QX1 QOl QA2 QX2 hl h2 h

&1 &2 &34 z1 x2 x8z4 ot 92 01 o4 h .& &&T 4a x& Ga xg l r8 &4 zl x2 xzx4 ol e2 08 o4

subcomponent AND gates al, a2, a3, or a4. In this case, the corresponding
functional components happen to be the gates themselves, and the behavior
rules at the level of gates have enough behavioral detail to detect conflicts
involving QA1 without involving QX1.

This yields the criterion that XDE uses to decide how deep in the func-
tional hierarchy to run rules, given a certain level of assumption in the physi-
cal hierarchy: instantiate all functional components that fully contain any im-
mediate physical subcomponent. A physical component is "fully contained"
if it is a physically mazimal part-of the functional component, abbreviated
xpart-of. The xpart-of relation holds between each physical component
and zero or more functional components (Figure 7.6). A physical component
is a physically maximal part of a functional component when it all its sub-
components help to implement that functional component. Strictly speaking,
it is when all the leaf ppart-of descendants of the physical component are
leaf fpart-of descendants of the functional, but the parent of the physical
component is not maximal. For example, QA1 is xpart-of tbl because all
of its leaf subcomponents are leaf subcomponents of tbl, but the same is
not true of the parent of QA1, Board A. Hence if Board A were assumed to
be working, QA1 is an immediate physical subcomponent of Board A and is
zpart-ot tbl, so tbl would be instantiated. The children of tbl would not.

There is one further complication, which is that for each layer of physical

p|

192 CHAPTER 7. TROUBLESHOOTING

Figure 7.6: XPART-OF Relations in the Four-Bit Adder

tpart-of

xpart-ofade

ppart-of ..

Board A Bor

QAI 1 QA QXI hi h h4

&1. &2.4 & 12z8z4 o1oe28o4 .&d&a#a xf aJ z& n d. xl 2 x4l o 8o4

detail, there may be several layers of functional detail, and XDE proceeds
through the functional detail one level at a time. The "decomposition" oper-
ation may thus be applied to the same physical component more than once,
although sometimes it will result in functional components being instanti-
ated, and other times in splitting of assumptions. The table below shows an
example of the order in which XDE would intersperse assumption splittings
and component instantiations.

All Existing New Instantiations
Step Assumptions of Functional Components

1. A, B
2. adder
3. tbl, tb2
4. QA1, QX1, QO1, B
5. fal, fa2
6. h, h2, h3, h4, ol, o4
7. al, a2, a3, a4, xl, x2, x3, x4
8. Al, A2, A3, A4, QX1, QO1, B
9. Al, A2, A3, A4,

Xl, X2, X3, X4, QO1, B

Step 1: both boards are assumed working and no components are instan-
tiated. Step 2: the adder is instantiated. Suppose the conflict (A, B) results.

7.3. RANKING AND REFINEMENT 193

Now [A] and [B] are candidates. Step 3: the subcomponents of the adder, tbl
and tb2, are instantiated. No further progress can be made in the functional
hierarchy. Step 4: split the assumption that A is working. The conflict (A,
B) is replaced by (QA1, QXl, Qo1, B). Now [QAI], [QX1], [QO1], and [B]
will be candidates. Steps 5 through 7: instantiate functional components all
the way to the level of gates, within the full-adders fal and fa2. Suppose the
conflict (QA1, QX1) is discovered. Now [QA1] and [QX1] are candidates.
Step 8: split the assumption QAI; Step 9: split the assumption QX1. There
are no instantiations to do, since the gates were primitives.

7.3 Ranking and Refinement

The ranking of candidates in XDE takes syndromes into account. The method
is an extension of the candidate ranking method discussed in the previous
chapter.

Without syndromes, candidate ranking works as follows. Each compo-
nent is assigned a prior probability that it is working based on an estimate
of its physical complexity. Assuming independence among failures in all
components, the probability of a candidate is thus the probability that all
components have just the status assigned in that candidate. For exam-
ple, the candidate [U25] assigns the status "other" to U25 and "working"
to the other components. The probability assigned this candidate is then
(1 - p(U25)) x p(U30) x p(U32). All candidates are then assigned a weight
that is their probability normalized with respect to all the minimal candi-
dates. This scheme yields intuitively satisfying results, since candidates in-
volving single faults are generally more likely than those with multiple faults,
and the candidates with the highest weights are those involving components
with higher failure rates.

In XDE, components can have statuses other than simply working or not
working, so there will be more candidates and a more elaborate ranking
function. The benefit of the additional complexity and expense is that the
troubleshooting engine exhibits better focusing. When candidates involving
syndromes are shown to be inconsistent with observations, other candidates
will appear more likely, and the troubleshooting engine will focus its efforts
on those likelier candidates.

To use syndromes, XDE refines candidates by installing assumptions of

I

194 CHAPTER 7. TROUBLESHOOTING

the form "physical component X is exhibiting syndrome S," denoted Xs. For
example, oscillator chips have the syndrome inactive; an assumption that
oscillator U25 is inactive is denoted U25io... Because each of the statuses
of a component are mutually exclusive, creating this assumption would result
in the conflict (U25w, U25 1 .. ,). The assumption that U25 is inactive re-
sults in the prediction that its output will have frequency zero, which in turn
has other consequences. Usually, new conflicts involving U25., will be
discovered. Candidates are still constructed as the minimal covering sets of
conflicts, but to deal with syndromes it is necessary to consider the comple-
ments of the candidates, the mauimal consistent environments. A maximal
consistent environment is one to which no assumption can be added without
making it inconsistent. There is one maximal consistent environment per
candidate. XDE constructs diagnoses from maximal consistent environments
as illustrated by example below.

Consider a version of the clock generator troubleshooting example, shown
in Figure 7.7. The three field replaceable components are the chips U25, U30,

Figure 7.7: Clock Generator

(out 0 u25a) (out y u25a) (out q

Oscillator Inverter JKFF JKFF

Chip U26 Chip U32 Chip U30

and U32. To better illustrate the refinement operation, assume that (i) chips
are primitives and etches do not fail, and (ii) all antibehavior rules are dis-
abled. The initial symptom that (out q u3Ob) is a constant 1 instead of
having frequency 2.5 Mhz yields the conflict (U25w, U30w, U32w), mean-
ing that one of these components is faulty. Refining the candidate (U25w]
with the syndrome U251xU,. yields the conflict (U25w, U2 5S..a,.) as well.

7.3. RANKING AND REFINEMENT 195 --

U25",-,, is consistent with the observations and with U30 and U32 work-
ing properly. The minimal covering sets of these two conflicts are [U25w],
[U30w,U25, cuv,., and [U32w,U25j.,a,.u. The maximally consistent envi-
ronments are their complements {U30w,U32w,U25,...,}, {U25w,U30w}
and {U25w,U32w} respectively. Each maximally consistent environment de-
notes a consistent assignments of statuses to every component.

These environments denote three possibilities: either (i) U30 and U32 are
working and U25 is exhibiting syndrome inactive, or (ii) U25 and U30 are
working and U32 has status other, or (iii) U25 and U32 are working and U30
has status other. There is a fourth possibility, that U30 and U32 are working
and U25 has status other - it might be neither working nor inactive. Each
maximal consistent environment that contains assumptions about syndromes
yields several diagnoses, one for each subset of those assumptions. In this
case there is only one such assumption and hence only one extra diagnosis.
This yields four diagnoses in all, three con-sponding to maximally consistent
environments and one created by deleting assumptions about syndromes from
those environments.

Each diagnosis that XDE generates in this manner specifies a single status
for each component mentioned by any assumption. For brevity of notation,
a diagnosis is denoted [... I and shows only the component statuses that are -

not working. For example, [U251Ia,,.] denotes a diagnosis in which only the
assumptions U30w, U32w, and U25 1.,d,. are present. [U25outk] denotes a
diagnosis in which only U30w and U32w are present.

Each diagnosis has an initial likelihood corresponding to the prior proba-
bility that every component has the status assigned, assuming independence
between components3 . The distribution assigned to each set of component
statuses is derived from the physical complexity of the component, as de-
scribed in Chapter 6. The weight assigned to each diagnosis is its likelihood

'Although BASIL guarantees that physical components do not share parts so that their
failures can be assumed to be independent, XDE does handle the more general case of
shared parts. Each maximal consistent environment may have several independent subsets
of assumptions, each of which would derive the same consequences as the full environment.
XDE computes the likelihood of diagnoses by taking the maximum likelihood of any in-
dependent subset, which is combinatorially expensive if independence is not maintained.
Although not explored extensively, XDE should thereby be able to correctly assign likeli-
hoods to diagnoses that involve dependent failures, since it would compute that likelihood
based only on the likelihood of the original (independent) failure.

196 CHAPTER 7. TROUBLESHOOTING

normalized over all diagnoses (Una ot6 and Unn s. are hereafter abbre-
viated to U 0 and Uun 1):

Diagnois Likelihood Weight
(U251] ,(u251) x v(wOw) x ,(unw) = .00984 .623
JU30o p(u25w) x (1 - P(USw)) x ,(Unw) - .00315 .200
IU32o1 X(u2sw) x ,USOw) x (1 - P(US2w)) = .00276 .175
[U25o (1 - P(Uuw) - (u25,)) x r(USw) x p(USw) = .000051 .00323

From the possible diagnoses, XDE now assigns a weight to each compo-
nent based on the likelihood that it needs to be repaired. This is done by
adding the weights of all diagnoses in which that component is faulty. For
example, U25 is broken in both diagnoses [U25..j ,.] and [U25oth.], so
both their weights contribute to the "repair weight" of U25. The table below
shows the weights for U25, U30, and U32:

Component Candidate Weights Repair Weight
U25 .623 + .0032 = .626
U30 .200 = .200
U32 .175 = .175

Continuing the diagnosis, suppose (11 (out y u32a)) is observed to be
changing. This yields the additional conflict (U25 1.,4,., U32w), since it
is inconsistent for the oscillator to be inactive, the inverter working, and
the output changing. In this case intuition says that the oscillator U25 is
no longer as likely to be faulty; the new diagnoses shown below and their
rankings support that intuition. The diagnoses involving U25 are much less
likely than ones involving U32 or U30.

Diagnosis Likelihood Weight
[U30o1 p(U2Sw) x (1 - p(u3ow)) x p(Uaw)ff .0032 .53
[U32 0 1 P(U2sw) x P(UOw) x (1 - p(U52w))= .0028 .46
[U25o] (1 - P(Unw) - p(U2 1)) xr(U3Ow) x j(US32w)= .000051 .0085
[U25x,U32o] p(U2 1) x p(U3OW) x (I - p(U3w))= .000028 .0046
U25,U32o (w) - X(Uw) (- Uw))= .00000014 .000024

The repair weight associated with each component adjusts to the new
ranking, indicating that U30 and U32 are much likelier to need repair than
the oscillator U25:

7.3. RANKING AND REFINEMENT 197

Component Candidate Weights Repair Weight
U30 .53 = .53
U32 .46 + .0046 + .000024 = .46
U25 .0085 + .0046 + .000024 = .013

The component status likelihood estimates can be perturbed greatly and
still yield the same candidate rankings. It is the relative magnitudes of the
likelihoods associated with statuses other than working in different com-
ponents that matter, not their particular values. In the case of the clock
generator, for example, the same rankings would have been obtained had the
complexity of the oscillator been estimated as low as 40 (instead of 100), and
as long as not all oscillator failures resulted in status inactive. The table
below shows some examples of how much variation there can be. Each of the
last four columns of the table below shows an alternative set of component
status likelihoods that result in the same candidate rankings as above:

Component Status Likelihood
U25 working .60 .80 .999 .60

inactive .20 .15 .0005 .20
other .20 .05 .0005 .20

U30 working .70 .85 .9998 .85
other .30 .15 .0002 .15

U32 working .80 .90 .9999 .91999
other .20 .10 .0001 .0001

Note that the results remain stable even though likelihoods of the other
and inactive statuses vary by orders of magnitude, so long as their order is
preserved.

The scheme that XDE uses for generating and ranking diagnoses is expen-
sive. Both GDE and XDE suffer from combinatorial explosion of candidates,
but the refinement operation that XDE provides exacerbates the problem.
In pathological cases the number of candidates (or maximal consistent envi-
ronments) can be exponential in the number of conflicts, hence exponential
in the number of components. In XDE, the number of candidates is at least
exponential in the number of syndromes installed. Suppose there are n com-
ponents Ci and each has one syndrome S. Then there are 2n assumptions, n
of the form Cw and n of the form Cs. There are at least n conflicts (Cw, Cs).

198 CHAPTER 7. TROUBLESHOOTING

These n conflicts share no assumptions and if there are no other conflicts,
there will be at least 2" candidates. In experiments with the current imple-
mentation of XDE, the amount of time each new refinement operation took
approximately doubled and was stopped after the eighth refinement. Further-
more, there may be many maximal consistent environments containing more
than one syndrome assumption. This has two undesirable consequences.

The first undesirable consequence is that a maximal consistent environ-
ment with ni syndrome assumptions generates 2" diagnoses, one for each
combination of those n syndromes. For example, if it is consistent for X to
have failure status SI and Y to have failure status S2 simultaneously, then
it is also consistent for X to have status Si and Y to have status other,
and vice versa. Thus one maximal consistent environment generates three
diagnoses. Although several different maximal consistent environments may
generate the same diagnoses, the potential for further combinatorial explosion
is present. XDE does not do anything about this problem. It maintains the
complete set of maximal consistent environments and diagnoses computable
from the current conflicts.

The second undesirable consequence is that syndromes add new informa-
tion to the behavior model from which many useless deductions will be made
unless some additional control is exercised. Since syndromes usually have low
likelihoods, environments containing multiple syndromes will have exception-
ally low relative likelihoods. Each syndrome results in new predictions being
made in the behavior model; for example, the inactive syndrome for oscil-
lators results in the prediction that the frequency of the oscillator output is
0. Since the predictions from different syndromes will interact, there will be
many predictions that are present only in environments of very low likelihood.
To deal with this problem, XDE controls the running of rules in such a way
as to avoid doing work in environments of low likelihood. XDE pays the price
of explicitly switching from one maximal consistent environment to the next,
making predictions only in that one environment, and thereby only working
on a few diagnoses at a time. This allows XDE to look for contradictions
only in the diagnoses with the highest weights, never making deductions in
environments whose likelihoods lie below a fixed threshold percentile. Ex-
plicit context switching is a high price to pay for this control, because the
worst-case overhead is proportional to the total number of clauses times the
number of diagnoses that get explored. However, it is possible to get the best
of both worlds, and (deKleer86b] and [Geffner86] both demonstrate schemes

7.3. RANKING AND REFINEMENT 199

upon which a more efficient implementation might be built someday.
To summarize, the procedure that XDE performs whenever a new conflict

is discovered is as follows:

1. Update the set of maximal consistent environments. Maximal consis-
tent environments are the complements of candidates as constructed by
GDE.

2. Generate the set of diagnoses from the maximal consistent environ-
ments. Diagnoses are the subsets of the maximal consistent environ-
ments obtained by deleting syndrome assumptions.

3. Assign a probability to each diagnosis. Since each diagnosis assigns a
status to every component mentioned by the universe of assumptions,
the probability of the diagnosis is computed as the probability of the
conjunction of all those statuses.

4. Normalize the probability of each diagnosis with respect to all the other
diagnoses. This is the weight of each diagnosis.

5. Compute the repair weight of each component. The repair weight is
the sum of the weights of diagnoses in which that component is broken.

If no syndromes are ever introduced, the set of diagnoses is the same as
the set of maximally consistent environments, and the ranking is then ex-
actly as in GDE. The addition of syndromes into that basic troubleshooting
engine obviously introduces complexities into the generation and ranking of
diagnoses. The advantage of doing so is that introducing a new syndrome
assumption into an existing set of diagnoses can drastically shift the distri-
bution of weights among the diagnoses, provided that the syndrome turns
out to produce new conflicts with existing or subsequent observations. For
example, in the clock generator used as an example throughout this section,
without the syndrome U25 1 .. u,., the observation that (11 (out y u32a))
was changing would have added no new information and the oscillator would
have remained a likely diagnosis. With it, the weights of candidates involving
U25 are all reduced below 2% each.

200 CHAPTER 7. TROUBLESHOOTING

7.4 Making Observations

XDE selects informative observations using the same heuristic one-level looks-
head strategy as GDE, but there are complications that arise in the digital
circuit domain as represented in TINT. Among these complications are that
(i) imprecise predictions hamper the ability of the lookahead strategy to make
good choices, (ii) observations must be temporally quantified, and (iii) the
possible observations have differing granularities and costs. XDE has partial
solutions to the latter two problems, but the problems resulting from impre-
cise predictions are fundamental to any representation that trades precision
for efficiency. After a brief review of the probe selection strategy, each of
these issues will be considered in turn.

The expected information from a given observation can be quantified
using the entropy of the possible outcomes of the observation. The entropy
iq the sum of pi log pi where i ranges over all outcomes and each pi is the
combined weight of the diagnoses that predict outcome i. Continuing the
clock-generator example from above, the following set of diagnoses and their
weights result after the initial symptom is discovered:

Diagnosis Likelihood Weight
[u2511 .00984 .623
[UI3o .00315 .200
1U32o] .00276 .175
[U25oi .000051 .00323

The behavior model makes many predictions; a small sample is shown
below along with the environments in which they hold and the weights of
the diagnoses that are definitely consistent with those environments. The
prediction that the output of U30a is not changing is true in the empty
environment and so is known to be consistent with all the diagnoses:

7.4. MAKING OBSERVATIONS 201

Weights of
Value at Consistent

Signal time 10" Environments Diagnoses
(changing-wrt --

0 106 (11 (out 0 u25a))) t {U25w} .200, .175
(changing-wrt i {U251 .623

0 106 (11 (out 0 u25a)))
(chanin-wrt t {U25w,U32w) .200

0 10 (11 (out y u32a))) .
(changing-wrt nil {U25,U32w) .623

0 106 (11 (out y u32a)))
(changing-wrt .623,.200,
0 10' (11 (out 0 u30a))) n .175, .0051

Each of the ports (out 0 u25a), (out y u32a), and (out 0 u3Oa) can
be observed to see whether its logic-level signal is changing. The expected
benefit of making an observation at each port is the negative of the entropy
of the distribution of weights among the various outcomes. An approximate
version of the computation is shown in the table below.

Port Sum over -p log pi

(out 0 u25a) -(.200 +.175)log(.200 +.175) - 956-(.623) log(.623)

(out y u32a) -(.200) log(.200) .890-(.623) log(.623)
(out 0 u3Oa) -llogl = 0.0

The last line shows that probing a signal that has already been observed
has zero value. The other values indicate that probing the output of the
oscillator u25a maximizes the expected information and so is preferable to
other probes (when different probes yield the same estimated information
XDE picks one of them essentially at random).

The relative likelihoods of component statuses working, other, and so
forth impact the probe selections by influencing the weights of diagnoses.
Diagnoses with high weights tend to bias XDE toward choosing probes in the
vicinity of the components they mention. For example, had the likelihood of
failure in U30 been greater than the likelihood of failure in the oscillator, the
probe at (out y u32a) would have been chosen instead. Roughly, the higher

--1

202 CHAPTER 7. TROUBLESHOOTING

the repair weight of a component (that is, the more diagnoses it appears in
and the higher the relative likelihoods of those diagnoses) the more highly
ranked the probes in its vicinity.

7.4.1 Prediction Strength and Probe Selection

Weak predictions of behavior cause the troubleshooting engine to make poor
estimates of the information to be obtained at possible probe points. This
in turn may cause it to wastefully ask for observations that do not produce
any informative conflicts. As discussed earlier, there are several reasons why
the behavior representation may be unable to make predictions: (i) abstrac-
tions may result in component behaviors not being total functions, (ii) local
propagation of signal values may reach impasses, or (iii) the behavior of com-
ponents may be too complex for there to be any good antibehavior rules. In
the clock generator example being used at the moment, the reason is that
the antibehavior rules have been disabled for presentation purposes.

Weak predictions raise the technical problem of estimating the expected
information from a probe when some diagnoses make no prediction about the
outcome of the probe. For example, [U25oI makes no prediction about the
signal at port (out 0 u25a). The problem is that computing the entropy
requires a distribution of probabilities that sum to 1. There are at least four
ways of handling the weight that should be distributed among the diagnoses
that make no prediction:

Assume that the other diagnoses predict some value that is different from
all the explicitly predicted values. This is an optimistic assumption and tends
to overestimate the information from a probe. For example, suppose that
diagnoses carrying .5 of the weight predict that a particular signal will be
changing, but the others make no prediction. The information .69 in this case
would be computed the same as if all those other diagnoses had predicted the
signal would not be changing. But suppose that diagnoses carrying weight
.33 predict it will be changing, and others carrying .33 predict it will not.
This method would estimate the information as 1.09, although there are
really only two possible outcomes and the information cannot possibly be
more than 1.

Assume that the other diagnoses predict the value that is likeliest among
the possible values. This is a pessimistic assumption, tending to underesti-
mate the information. For example, if diagnoses carrying .4 predict the signal

7.4. MAKING OBSERVATIONS 203

is changing and others carrying .3 predict it is not, the result is computed
as if the distribution had been .7 and .3, so the information is .61. If diag-
noses carrying weight .5 predict a signal is changing and the rest make no
prediction, the result is computed as if all diagnoses had predicted it would
be changing too. Thus the information is 0.

Assume that the distribution of outcome, among the remaining diagnoses
matches the distribution among the ezplicitly predicted outcomes. In general
this provides more optimistic estimates than a method in which all possible
outcomes are known, but an overly pessimistic estimate of 0 in the case where
only one outcome has been explicitly predicted.

Assume that all possible outcomes are equally likely, and distribute the
weight among them. This is the method used by GDE. Suppose for example
that there are four possible outcomes a through d, with p(a) = .3, p(b) = .2,
p(c) = .1, and p(d) = 0. This leaves a weight of .4, and this method yields a
distribution of p(a) = .4, p(b) = .3, p(c) = .2 and p(d) = .1, and information
of 1.28. The number of outcomes can be treated as +o if not known.

This last method usually makes estimates that'fal between those of the
first and second methods above, and does not exhibit the anomalous behavior
of the third when only one outcome has been explicitly predicted. It has other
anomalies, however. Consider a signal I that is completely disconnected from
the current set of candidates. No diagnosis predicts whether it is changing or
not. According to this method, probing I is more informative than probing
a signal ¥ that two-thirds of the diagnoses predict will be changing and that
the other one-third predict will not.

XDE uses method 4 because it makes reasonable estimates and its princi-
pal anomaly is easy to avoid: signals for which no diagnosis predicts a value
are never probed. The values XDE computes for each of the three probes
are shown below. These are more accurate versions of the approximate val-
ues shown earlier, although the differences are very small and the relative
rankings in this case have not changed.

204 CHAPTER 7. TROUBLESHOOTING

Port Sum over -p, log pi
(out 0 u5a) -(.20 + .175+ .0025) log(.200 + .175+ .0025)

-(.623 + .0025) log(.623 +.0) = 0.54

(out y u32a) -(.200+ .088) log(.200 + .088) = 0.890

-(.623 + .088) lo(.623 + .088)

(out 0 u3Oa) -lo1gi = 0.0

7.4.2 Temporal Quantification and Granularity

The behavior of a circuit can be observed at various times and at temporal
granularities, with varying cost in setup time and difficulty. XDE currently
has a simple and limited treatment of these issues.

Signals must be observed over time intervals. Each observation in XDE
is a TINT thzu predication and is part of some signal history. The expected
information gain from the probing of any signal is the maximum for any
interval during its history. Thus, when XDE suggests that (say) signal (11 X)
be probed, it means that there is some interval of its history during which
an observation would be useful. XDE presents to the user the entire signal
history of (11 X) and abstractions of it along with some typical misbehaviors
(a constant 1, for example). The actual observations made of the device will
probably correspond to one of the intervals already presented; if not, then
an interval describing the observation can simply be typed in. For example,
XDE may expect the value to be observed at a certain signal to be either 10
or 12, and so presents those as options; if the actual observation was 13 that
can be typed in too. All observations are assumed to be completely accurate
in terms of the signal values observed and the intervals over which they were
seen.

The default interval over which signals are to be observed is denoted by
a "global reference" timeline denoted by the pseudo-signal GR. The assertion
[thru ?a ? OR t] means that observations are made by default with re-
spect to the time interval ?a to ?z inclusive. The interval ?a to ?z is referred
to as the current "observation interval," which is automatically changed as
the user adds new observations. The usual default is the ten second interval
from 0 to 10w nsec inclusive.

In a real troubleshooting session, the circuit board continues its behav-

7.4. MAKING OBSERVATIONS 205

ior while the troubleshooter thinks about what to do next, and each new
observation is made at a later time than the last. Since it would .be un-
wise to assume that the circuit is not changing its state, the troubleshooter
ordinarily forces it into a known state before making each new observation
(by pressing a "reset" button, for example). The troubleshooter ordinarily
further assumes that if the observations of the circuit are made more than
once, the same results will be obtained each time. XDE has these assump-
tions built into it. For example, in troubleshooting the Audio Decoder each
new observation is added over the interval from 0 to 1010, rather than mak-
ing each observation come after the previous one. Similarly, in the Input
Encoder troubleshooting example, observations are added over the intervals
(-oo, +oo), [1 x 109,2 x 109], [2 x 109, +oo), and [0, 10101, in that order. It is
assumed that each new observation is made after pressing the reset button
and providing identical test inputs to those before, so that the same behavior
predictions are obtained.

Observations of different kinds of signals at different locations have differ-
ent costs in setup time. Currently XDE only allows signals to be observed at
the external ports of pins, where the pin meets the etch (although for clarity
most of the examples elsewhere show observations being added at the clos-
est port of some functional component). Observations also cannot be made
over intervals shorter than one second. XDE associates a numerical cost with
each possible probe, and its probe suggestions are biased to favor cheaper
observations by multiplying the expected information of each probe times its
cost. The costs currently used are as follows; they are estimates based on
the relative ease of making the observation:

* Observing whether a logic-level signal is I or 0 all through the current
observation interval costs 1.0. This is the most basic kind of observation
and involves placing a single probe.

" Observing whether a logic-level signal is changing with respect to the
current observation interval costs 0.9. This is slightly easier than view-
ing the actual value of the signal.

" Observing the swing of a voltage with respect to the current observation
interval costs 0.9. Observing the amplitude of a signal is judged to have
about the same difficulty as judging whether it is changing or not.

206 CHAPTER 7. TROUBLESHOOTING

" Observing the frequemcy of a logic-level or voltage signal during the
current observation interval costs 1.1, since it may require adjusting
the temporal resolution of the oscilloscope.

* Observing the value of a signal sampled with respect to a clock costs
2.0, since it involves setting up two probes, one a strobe for the other.

• Observing the frequency of a two-phase clock signal costs 2.0, since it
too involves setting up two probes.

Observing the outputs of the Input Encoder cost 1.0 no matter where
they are physically located; these are assumed to be observable through other
hardware not explicitly represented. The brightness of the console screen, for
example, is an indirect way to observe the brightness signal.

7.5 Evaluation

Testing and diagnostic program are usually evaluated by their coverage (the
range of faults they can detect), resolution (the accuracy with which they
can identify any fault actually present) and spead (as measured by the time it
takes the running program to isolate the fault). The combined troubleshoot-
ing system of XDE, TINT, and BASIL can be evaluated this way too, although
it is important to distinguish which subsystem is responsible for the quality
achieved along each dimension. In model-based troubleshooting, coverage,
resolution, and speed all depend critically on the ability to detect conflicts
between the actual behavior of the device and its predicted behavior. XDE
cannot do anything without those conflicts; if the model is too weak to pro-
duce predictions that are falsifiable by observations, then XDE will ask for
many observations but make no progress toward isolating the fault. Thus
the importance of the device representation far outweighs that of the trou-
bleshooting engine.

7.5.1 Coverage

XDE needs to discover at least one discrepancy before it starts generating
diagnoses. TINT, therefore, must represent enough detail about the behavior
of the circuit as a whole to detect any misbehavior worth repairing. This does

. . .. m mmurl l l l i i i i mmm m lmi l mlmml-.0

7.5. EVALUATION 207

not imply that every misbehavior of every individual component needs to be
detectable, although that is one way to guarantee coverage. For example, if
the specifications of the Console Controller Board say that the screen bright-
ness should increase in response to the "b" command, but do not specify how
fast, then it is probably okay to represent that rate of change qualitatively
instead of quantitatively. Any faults whose only effect would be to slow down
the rate of advance would not be detected. The coverage provided by a be-
havior model is thus relative to the desired function of the whole device and
of the detail of the observations.

The representation of the Console Controller Board in TINT is an in-
complete prototype in this respect, since there are some functions of the
board that its behavior definitions are too temporally coarse to represent.
For example, if the board were faulty in such a way that large motions of
the mouse across the table were to result in only small and sporadic motions
on the screen, this would surely be considered a misbehavior. But since the
TINT signals only represent the motion qualitatively it cannot describe the
misbehavior. A rough measure of the coverage that the representation pro-
vides is to count the most common classes of faults, and determine which of
them result in misbehaviors that can be distinguished. Among the most com-
mon faults are those that cause individual pins to act as open circuits. The
Audio Decoder, for example, has nine chips having some 160 pins between
them. Of these 160, failures in all but 30 would be detectable as discrepancies
in the swing, frequency, and frequency in the first derivative of the voltage
output of the digital-to-analog converter. Coverage of 80% of the common
faults from only these three features of the output voltage is not bad, and
would probably be improved with more detailed behavior rules for the shift
registers and counters.

7.5.2 Resolution

A model-based troubleshooting program provides diagnostic resolution in
proportion to the structural and behavioral detail that the device model
provides. The program cannot of course distinguish between components
that are not represented separately. BASIL, for example, represents an entire
etch as a single component, so a break anyplace in the etch results in the same
diagnosis. A subtler problem is that even failures in components represented
separately cannot be distinguished if their behavior models and observations

I

208 CHAPTER 7. TROUBLESHOOTING

are insufficiently detailed. For example, Figure 7.8 shows a two-component
device whose A and B components have the behaviors A and B. Suppose that
x and z have been observed and a discrepancy detected at z. (Aw, Bw) is a
conflict and the diagnoses are [Awl and [Bwl.

Figure 7.8: Distinguishing Between Diagnoses

To distinguish between these diagnoses requires an observation at y - but
it also requires that either the observation contradict (A x), or that (B y)
contradict the observation at z. It might do neither. The observation might
be too coarse, the behaviors might be partial, or both. There is nothing
wrong with the troubleshooting engine; short of having an exhaustive set of
syndromes for A or B, there is nothing it can do. The model is too weak.

The temporally abstract models of the Console Controller Board cause
problems for XDE that are very much like this example. In principle TINT can
represent the temporally detailed behavior in terms of logic-levels 0 and 1 for
every gate in a circuit, and hence in principle XDE can detect misbehavior in
any individual component. In practice, TINT rules only cover the temporally
coarse behaviors that are easy to observe. For example, an open circuit on
a control input of the shift register U21 might result in all its parallel data
output signals changing, although in seemingly random fashion that would
show up on the digital-to-analog converter (U43) output as such (Figure 7.9).

Even assuming that every visible node in the Audio Decoder were probed
to see whether it was changing or not, there would nevertheless be no way
to distinguish between the diagnoses [U21oib] and [U43othl,. The outputs
of U21 are not represented in enough temporal detail for a discrepancy to be
detected there. More generally, among the 130 detectable common faults in
the Audio Decoder, about half of them are distinguishable down to a single
chip and the remainder result in this kind of ambiguity. Beyond the common
faults, it is probably the case that most faults internal to the chips would
result in similar lack of resolution. The temporal detail of the predictions is

7.5. EVALUATION 209

Figure 7.9: Detail of Audio Decoder

Data U21 U43

Parallel Data Voltage

Clock U ___Outputs Output
___o__-__ Digital to

Control Analog
Shift Converter

sufficient to allow many correct diagnoses but is insufficient to achieve perfect
resolution, even with exhaustive probing. Ultimately, given any particular
level of structural detail, if perfect resolution is desired there will always be
cases that require detailed timing information.

7.5.3 Speed
An appropriate measure of the speed of a model-based troubleshooting pro-
gram is the number and cost of the observations it requires to reach its final
diagnosis. This is a meaningful measure so long as the device model provides
enough resolution that there is in fact such a thing as a "final diagnosis." If
the behavior model is too weak or the observations too coarse to distinguish
different components, XDE eventually quits after asking for all possible ob-
servations. The speed metric in that case is hardly meaningful. Even if the
model and observations do provide sufficient detail to discriminate compo-
nents down to the primitive level of detail, the model may still be too weak to
discover genuine conflicts between what has been observed and what should
have been. In that case more observations will be required than strictly nec-
essary. The probe selection strategy used by XDE has a number of heuristic
aspects: (i) it is influenced by component failure rates that are estimates,
(ii) it estimates the benefits of probes with a one-level lookahead rather than

210 CHAPTER 7., TROUBLESHOOTING

seaching through all possible sequences of observations, and (iii) it estimates
information from probing signals whose predicted value is not known in all
diagnoses by assuming that all observation outcomes are equally likely. How-
ever, no matter how good these heuristics are, in the long run their positive
impact on the probes actually chosen are unlikely to be nearly as strong as
the negative impact of a device model that cannot make full use of the ob-
servations actually chosen. The cleverest strategy for choosing observations
cannot make up for observations and models that are too coarse to detect
discrepancies.

7.6 Summary

The model-based troubleshooting engine XDE extends GDE by incorporating
hierarchic diagnosis and fault models. Hierarchic diagnosis is achieved with
the decomposition operation, which descends one level at a time through
both the physical and functional hierarchies in BASIL. Knowledge about
how components fail, represented as syndrome*, is used in the refinement
operation. Syndromes help focus the troubleshooting process by biasing the
suggestion of new observations away from components unlikely to be failing.
XDE can suggest observations of signals at various temporal resolutions, and
it biases its suggestions toward those that are cheaper.

Like all model-based troubleshooting engines, XDE is almost totally de-
pendent on the device model and on the technology for observing the real
device. Obviously, if the model lacks fidelity its diagnoses may be incorrect.
A subtler problem is that if the model is imprecise - if it fails to produce fal-
sifiable predictions - the troubleshooting engine will be indiscriminate, never
reaching a conclusive diagnosis no matter how many observations are made.
In light of this dependence, any evaluation of the quality of the diagnoses
that XDE produces is really an evaluation of the quality of the underlying
device model.

Chapter 8

Conclusions and Future Work

Model-based troubleshooting has not previously scaled up to deal with com-
plex devices such as digital circuit boards. This is because traditional analytic
models of complex devices do not explicitly represent aspects of the device
that are important for troubleshooting. This report has described a digital
circuit representation that was constructed with troubleshooting explicitly in
mind, a representation that enables the general model-based troubleshooting
engine XDE to successfully diagnose failures in circuits that are much more
complex than any previously attempted. This representation is embodied in
the language BASIL for representing the physical and functional organiza-
tion of circuits and in the temporal reasoning system TINT for representing
circuit behavior. The modeling principles that underly these languages and
govern their use concern ways in which features of the circuit relevant to
troubleshooting can be made explicit:

o Components in the representation of the physical organization of the
circuit should correspond to the possible repairs of the actual device.

Making the elements of the structure representation correspond to pos-
sible repair actions ensures that the troubleshooting program will not waste
effort trying to discriminate between diagnoses that have identical repairs.

BASIL represents circuits using a strict hierarchy of physical components that
reflects the way the board was manufactured and hence those parts that can
be replaced.

* Components in the representation of the functional organization of the
circuit should facilitate behavioral abstraction.

211

212 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

The only role that an explicit representation of functional organization
plays in model-based troubleshooting is to make behavior prediction more
efficient. In extracting the functional organization from a raw schematic the
modeler need only represent what will make the behavior easier to reason
with, rather than necessarily representing what the designer had in mind.
BASIL represents this functional organization using a nonstrict component
hierarchy whose leaves are shared with the physical hierarchy. XDE does hi-
erarchic diagnosis using the physical and functional hierarchies by descending
primarily through the physical hierarchy, while reasoning about the behav-
ior of functional components roughly corresponding to each level of physical
detail.

9 The behavior of components should be represented in terms of features
that are easy for the troubleshooter to observe.

Some features of time-varying signals are easier to observe than others.
In digital circuits, temporally coarse features of signals are easier to ob-
serve than clock-cycle-by-clock-cycle behavior. TINT provides a framework
in which both abstractions and behaviors are functions from signals to sig-
nals, along with a vocabulary of temporal abstractions including concepts
such as change, count, and frequency. Expressing the behavior of compo-
nents in these terms makes prediction more efficient while largely retaining
the ability to detect the effects of common faults.

The behavior of a component for which changes on its inputs always
results in changes on its outputs should be represented in temporally
coarse terms.

Given a set of temporal (or any other) abstractions, it is an interesting
and relevant question to ask: for what class of behaviors it is possible to
formulate easily computable and strong abstract behaviors? More specifi-
cally, given the language TINT and its vocabulary of temporal abstractions,
for which components is it worth writing temporally abstract behavior rules
for? In the case of temporal abstractions, the natural class of relevant be-
haviors are those for which changes on inputs always result in changes on
outputs. Combinational behaviors expressible as one-to-one functions, as
well as toggles, counters, and shift registers, fall in this category.

213

* A temporally coarse behavior description that only covers part of the
behavior of a component is better than not covering any at all.

Although the full behavior of a component may be too complex to reduce
to a simple relationship between (say) the number of changes on its inputs
and the number of changes on its outputs, there may be a useful relationship
that involves only a subset of its inputs, assuming that the others are held
constant. Similarly, there may be a useful relationship between different
signals sampled with respect to a common clock. TINT rules for describing
the temporally abstract behaviors of components ranging from boolean gates
to microprocessors capture the normal behavior of those components using
these techniques.

* A sequential circuit should be encapsulated into a single component to
enable the description of its behavior in a temporally coarse way.

Although the individual behaviors of the components in a sequential cir-
cuit may not lend themselves to temporally coarse descriptions, the group
may be performing a simple function when taken as a whole. Encapsulating
the group of components makes it possible to apply other temporal abstrac-
tion techniques such as holding inputs constant. In many troubleshooting
situations, it will be unnecessary to ever consider the individual state tran-
sitions of its sequential behavior.

e An explicit representation of a given component failure mode should
be used if the underlying failure has high likelihood.

Components break in the field in certain ways much more often than
in other ways. XDE takes advantage of this knowledge by extending the
multiple-faults approach of GDE [deKleer87] to use fault models. The notion
of a syndrome in BASIL and TINT captures knowledge about the likelihood,
physical causes, and local behavioral effects of failures. Syndromes are ben-
eficial when they are inconsistent with the symptoms, since this can reduce
the ambiguity among the possible diagnoses. A syndrome with relatively
high likelihood is valuable because it can be used to virtually eliminate an
otherwise logically possible diagnosis.

214 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

* An explicit representation of a given component failure mode should be
used if the resulting misbehavior is drastically simpler than the normal
behavior of the component.

If a component with normally complex behavior has some potential in-
ternal fault or faults that cause it to misbehave catastrophically, then any
partially correct behavior observed for the component makes it a less likely
suspect. Syndromes that simplify the behavior of a component are useful be-
cause their effects on the rest of the device are relatively efficient to predict.

The power of these eight principles has been demonstrated in an imple-
mented program that can troubleshoot problems in a board-scale circuit, the
Symbolics 3600 Console Controller Board. Testing the system on a wider
set of cases using the same board and modeling yet other boards are among
the important follow-up work that needs to be done. The following sec-
tions discuss three avenues of further research that should be performed: (i)
improving the engineering of the program, (ii) deriving the specialized trou-
bleshooting representation from more primitive circuit descriptions, and (iii)
generalizing the methodology beyond the domain of digital circuits.

8.1 Engineering Issues

The current implementations of XDE, BASIL, and TINT are demonstration
vehicles and are too slow to contemplate putting to serious use in trou-
bleshooting. Since their implementation details have not been presented in
this report it would be inappropriate to discuss in detail how those imple-
mentations could be improved, nevertheless it is worth mentioning certain
broad areas needing improvement.

Circuit structures are described in BASIL using the predicates isa, ako,
has-port, con, status-of, and corr, and assertions using these predicates
are stored in the most naive and general fashion as patterns in a discrimina-
tion net. A better implementation would store the components and connec-
tions as frame instances [Minsky75] (Batali8l] [Davis83]. JOSHUA provides a
substrate for doing so [Rowley87l, but the conversion has not yet been done.
Moreover, while building the BASIL description of the Console Controller
Board the lack of graphical display and editing facilities was keenly felt;
reimplementing BASIL using an existing design and layout language might

8.1. ENGINEERING ISSUES 215

be no more difficult than using any arbitrary frame language while yielding
considerably more utility.

TINT is slow in spite of its simplicity. As with BASIL, assertions involv-
ing the predicates thru and tsam are implemented (primarily) as patterns
in a discrimination net, and this generality is costly. A deeper problem is
that during the prediction process the forward chaining from these assertions
makes many deductions about time intervals that later turn out to be shad-
owed. This problem might be alleviated if assertions were made about time
intervals with relative endpoints instead of fixed integers. The predecessor
to TINT was a temporal constraint propagator MINT that used inequalities
over time points in that fashion. Goal-directed reasoning about these in-
equality constraints was integrated with the forward chaining from intervals
of signal histories. However, the effort to give this more complex program
adequate performance turned into a major research agenda all its own and
was suspended in favor of the simpler TINT ontology. The next incarna-
tion of the temporal reasoning subsystem will probably not be a data-driven
constraint propagator at all, but a goal driven system that produces more
limited predictions.

The hybrid TMS used in the program is basically a single-context TMS to
which the propagation of environments and labels has been added. Labeling
each assertion with its minimal environments is very useful for probe selec-
tion, implying the need for an Assumption-based TMS architecture (ATMS).
On the other hand there are at least two reasons for doing explicit context
switching: (i) TINT requires that some assertions be "shadowed" to prevent
rules from firing on them, an effect that seems difficult to produce in an
ATMS, and (ii) unrestricted rule firing in environments containing several
syndromes would be wasteful since the relative likelihood of those environ-
ments is usually very small. An ATMS that provided shadowing and efficient
incremental updating of environment likelihoods (so as to support best-first
search among diagnoses) would be a good replacement for the current hybrid - -- -

TMS.
XDE currently tries to use fault models, then tries to do hierarchic diag-

nosis, and when those fail it selects probes. A better strategy would make
use of the number of outstanding diagnoses and ambiguity among the di-
agnoses to choose the next operation. For example, when there are many
diagnoses, getting new observations is probably preferable to doing decom-
positions. Experiments with a strategy based on the entropy of the current

Pe

-. II

216 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

set of diagnoses did not yield significant improvement, but better control is
clearly necessary. The decomposition operation in particular is invoked far
too casually, resulting in many useless predictions being made.

Finally, XDE spends a surprising amount of time finding optimal probes'.
The basic reason is that the amount of work involved each time a probe is
chosen is proportional to the number of possible probes times the number
of candidates. However, since the only interesting probe is the one having
minimum entropy, there ought to be a way of sorting the possibilities so that
not every candidate or probe needs to be examined every time. Also, not
every candidate likelihood changes between observations, o there should be
some way to cache parts of the computation from one probe selection to the
next.

8.2 Deriving the Representation

The fact that the behavior rules for the components are currently all hand-
crafted is a cause for concern. In the short term, a library of signal definitions,
behavior constraints, and syndromes has been accumulated to speed up the
description of future circuits. However, the whole process needs to be au-
tomated: the troubleshooting program should be able to diagnose a circuit
starting only from a primitive representation of structure and part specifica-
tions along with whatever design specifications and annotations happen to be
available for its various modules. Presumably this would be done by building
and using an intermediate representation of its structure and behavior along
the lines described in this report.

Extracting an appropriately abstracted behavior representation from an
underlying physical structure is an exceptionally difficult problem. Since
the appropriate abstractions to be used for describing circuit behavior are
bound to capture some of the intended function of the circuit, there are close
connections between this and the function-from-form problem. [deKleer78]
presents as a key insight a teleological constraint: the correct interpretation
of the function of a designed artifact must assign some role to every structural
element. A latent flaw in that particular approach was that the target rep-
resentation of circuit function seemed to exist in a vacuum, having no role in
any problem solver. In FUNSTRUX (Hall87], by contrast, simulation models

'So does GDE (B. Williams, perso al communiation).

8.3. GENERALIZING THE METHODOLOGY 217

of digital circuit elements are symbolically composed into simulation mod-
els for aggregate structures; the compositions and subsequent simplifications
are strongly guided by the goal of producing efficient simulation models for a
specific event driven simulator. In the present case, ,the target problem solver _
is XDE and so the desirable characteristics of the target representation are
clear. This should provide a strong constraint on the relevant abstractions.
The FUNSTRUX approach might also work under the somewhat different
goal of producing temporally abstract behaviors. Finally, since the image
of an ordinary digital model under temporal abstractions can be viewed as
a reformulation into a specialized representation, the frameworks outlined
in [Kramer87] or [VanBaalen88] might be useful ways of approaching the
problem.

An alternative approach would be to start doing prediction at low levels
of detail, but recognize recurring patterns of events and extrapolate their
cumulative effects over large stretches of time. This is the essence of the
aggregation technique [Weld86]. There are at least two difficulties with this
approach: (i) recognizing what constitutes a "recurring" pattern of events,
that is, deciding which events are relevant to a given pattern, and (ii) ensuring
that the extrapolated predictions are robust against fencepost errors. In
spite of these difficulties it bears further investigation because it has strong
intuitive appeal - people seem to be good at detecting repetitive sequences
and extrapolating them to find their limits. At the very least, aggregation
should be a useful technique for generating fault syndromes from ordinary
fault simulations.

8.3 Generalizing the Methodology

Digital circuit troubleshooting is a relatively narrow domain. To learn more
about model-based troubleshooting of complex systems in general it is impor-
tant to apply the technology to systems in a variety of domains. The eight
principles of modeling for troubleshooting that form the core of this work
are briefly discussed below in the context of local area computer networks,
automobile engines, and internal medicine.

The eight principles can be used to suggest characteristics of a represen-
tation for troubleshooting computer networks. First, there is a superficially
appealing analogy to be drawn between the structure of computer boards

218 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

and the structure of networks. Instead of chips connected by wires, there
are hosts connected by cables, and so forth. However, one of the principles
dictates that the elements of the structure should correspond to !ailures and
repairs. On closer investigation of the domain it turns out that failures and
repairs in networks only rarely have a physical cause such as a broken cable;
the most typical failures are crashed server processes or operating systems,
for which the repair involves a restart operation. This indicates that, for
example, components such as hosts are not appropriate physical primitives,
but that in some sense server processes are. Second, tests are usually de-
signed into the system and can be quite cheap. Some networks, for example,
provide an operation that allows one host to request a status response from
every host on its subnetwork. To model the features of component behaviors
that are easiest to observe means that for the most part only the behavior of
the hosts with respect to these test operations needs to be modeled. Finally,
there are other network misbehaviors for which the principal symptoms are
temporally coarse - mail servers, for example, are notorious for building
up enormous queues that ultimately result in slowed response times. This
suggests that appropriate behavior models will deal not with the movements
of individual packets, but rather with temporally abstract features such as
the number of packets and their rates of transmission. All of the principles
for constructing temporally abstract behaviors appear to apply equally well
to network events as to digital events.

There are few obvious analogies between automobile engines and digital
circuits, but from the special perspective of troubleshooting and the prin-
ciples of modeling for troubleshooting engines have important similarities
to circuits. First, they are manufactured artifacts that are repaired by re-
placement of their physical parts. Second, the easily observed features of
the engine behavior are temporally coarse compared to events such as piston
firings and crankshaft rotations. Some of these temporally coarse features de-
scribe the behavior of subsystems with sequential feedback: for example, the
distributor, pistons, crankshaft, and generator form a feedback loop whose
interesting properties are its revolutions per minute, sputters, vibrations,
and so forth. Third, there are many failure modes worth modeling explic-
itly either because they are common or because they drastically simplify the
behavior of the engine: empty gas tanks, dead batteries, disconnected wires,
and so forth. While it would surely be a major task to construct a full-blown
model of an internal combustion engine, the eight principles do suggest which

8.3. GENERALIZING THE METHODOLOGY 219

properties of engines will be most important to include in a model to be used
for troubleshooting.

The methodology and principles in this work are most appropriate for
troubleshooting designed artifacts. An implicit assumption has been that
the modeler could in principle provide an arbitrarily detailed account of the
behavior of the system, while the modeling challenge is , make do with the
least detailed description that still works. This assumption does not apply
to human physiology and medicine; the challenge in these domains is to]ro-
duce any model. From the perspective of this work there are other important
differences as well. First, it is inappropriate to emphasize the representation
of physical structure. In medicine it is relatively rare that therapy consists
of physically isolated structural repairs (organ transplants notwithstanding).
Second, in medicine easily-observed symptoms are uncorrelated with their
temporal extent. While it may be important to explicitly model what can be
observed it generally has nothing to do with temporal abstractions. Third,
the criteria used to decide which circuit fault models to include are at best
incomplete for human diseases. For example, the short and long term se-
riousness of the diseases should somehow be taken into account. A few of
the principles of modeling for troubleshooting might apply to subdomains of
medicine for which good analytic modela exist, but only tangentially. For
example, in the multilevel physiological model in ABEL [Patil8l], one of the
simplif cations that distinguishes the abstract levels from the detailed ones
is that feedback loops are composed and summarized. In general, however,
there is as yet no compelling evidence that the principles of modeling for
troubleshooting will apply to modeling physiology for diagnosis.

Appendix A

Scenario Transcripts

The transcripts in Appendices A.1 through A.11 have three kinds of entries:

0 "There are n diagnoses..." indicates the status of the troubleshoot-
ing engine after each change to its set of diagnoses. The current top
diagnosis is shown with it.

* "Adding observation..." means that a new TINT assertion about the
value of some observable signal is being added.

0 "Entropy Signal; Aliases..." shows the top ranked probe -
its entropy, the internal name of the signal, two other nearby named
ports to help provide context, and finally the list of values predicted
there along with their labels.

To produce the transcripts, the troubleshooting engine consulted an or-
acle to get the result of its highest ranked probe, just as if a human user
had typed in the same result. Some of the transcripts have a histogram
at the end that summarizes the sequence of probes made. The length of
each horizontal bar corresponds to the number of competing diagnoses. The
bracketed timestamps (hh:um: us] give a rough idea of the performance of
the troubleshooting program running on a Symbolics 3650 with 2 Mw; 16
minutes for one of the Audio Decoder examples is typical.

220

A.1. CLOCK GENERATOR EXAMPLE 221

A.1 Clock Generator Example

There are I diagnoses (entropy 0.000) accounting for .06:
1.000 [a]

ii:03:10] Adti- observation of I at
ELL (ROLE 1 1163]

Colictl There are 3 diagnoses (entropy 1.305) accounting for .96:
0.639 E[(125 Other)]]

There are 3 diagnoses (entropy 1.303) accounting for .96:
0.639 ((U25 Other)]]

eiining 125 with OPEN

Th;r are 3 diagnoses (entropy 1.306) accounting for .96:
0.636 (16 Open)]]

D;,omposing (#<ASSUMPTION +117 (STATUS-OF U2s VORKINo]>)

There are 3 diagnoses (entropy 1.306) accounting for .95:

0.636 [[(26 Open)]]

Decomposing (#<ASSUMPTION +117 (STATUS-OF U30 VORKiNO>)

There are 3 diagnoses (entropy 1.305) accounting for .96:
0.636 (((125 Open)]]

Decomiposing (8ASSUMPTION +117 [STATUS-OFP 132 WORXING]>)

There are 3 diagnoses (entropy 1.305) accounting for .96:
0.636 (((25 Open)]]

Entropy Signal; Aliases; Valuo-Environment Pairs
0.9431 (CIAOIrIO-VRT 1000000000 10000000000 ELL (IDLE 1 1291]]]

aka [PIN 6 26] aka [OUT 0 126k
((NIL 0<11V 2 06> 0<11 1 010>) (1 *<WV I 01>))

i1:05:25] Adding observation of T at
[CNANGING-VT 1000000000 10000000000 ELL [OLE 1 1291]]]

There are 2 diagnoses (entropy 0.997) accounting for .96:
0.533 (((U30 Other)]]

Etropy Signal; Aliases; Value-Environment Pairs
0.9968 [CRIA ING-VIT 1000000000 10000000000 ELL (ROLE 1 1206]]]

aka (P[IN 2 U32] aka EOUT 132]
((T 8<11V 1 02>) (NIL *<INV 1 04>))

222 APPENDIX A. SCENARIO TRANSCRIPTS

i1i:06:061 = =a @~vtia of EU. as
EclAIGIS-UT10000 10000000000 CLL COLI 1 3205331

!tiere are I diagnoses (etropy 0.000) accoutiag for .95:
1.000 M93~2 Other)]]

A.2. AUDIO DECODER EXAMPLE I 223

A.2 Audio Decoder Example I

There are I diagnoses (entropy O.000) accounting for .05:
1.000 CO].

ii: 06:13] Adding observation ot 0 at
[CX-MIN-W 100000000 [VOLTAGS [HOLZ 1 1272333

There are 10 diagnoses (entropy 3.269) accounting for .05:
0.103 [[(043 Other)]]

Decomposing (*<ASSUMPTIO +117 [STATUS-07 U43 VOUtZIG]>)

There are 10 diagnoses (entropy 3.260) accounting for .96:
0.163 C(4 Othr)]]

,ecomposing (WASSVKPTIO +117 [STATuS-O V12 uO 31m>)

There are 10 diagnoses (entropy 3.260) accounting for .05:
0.163 [[(C4I Other)]]

Decoposing (*<ASSUMPTIO +X17 [STATUS-O 44 VO3111]>)

There are 10 diagnoses (entropy 3.260) accounting for .05:
0.163 C(U4 Other)]]

Decomposing (#<ASSUMPTION +11F CSTATS-OF U4 10U10]>)

Th;re are 10 diagnoses (entropy 3.269) accounting for .05:
0.163 C(VI Other)]]

ecomposing (ASSUPTIOI +117 [STATUS-OF VI 1X0N]>)

!&ere are 10 diagnoses (entropy 3.269) accounting for .9:
0.163 C(4V Other)]]

Decomposing (*CASSVIPTIO1 +zNF CSTAT S-OF U21 V110UKH]>)

There are 10 diagnoses (entropy 3.260) accounting for .06:
0.163 CV(U4 Other)]]

nlitropy Signal; Aliases; Value-Environment Pairs
0.8201 [CAIEGING-UT 0 10000000000 CLL [BOLE 2 1290]]]

aka CPIN 10 U43] aka [II CS U4A]
((T *<211 6 01307>))

[11:10:00] Adding observation of 1 at
ELL [HOLE 2 o290]]

Coflict! There are 6 di snoses (entropy 2.6;6) accounting for .05:
0.222 C(V12 Other)]]

224 APPENDIX A. SCENARIO TRANSCRIPTS

?hae are 5 diagnoses (entropy 2.286) acovating for .05:
0.203 E(((512 Other)]

De;oupoelag (8ASSDXPTIO +Iff [STATUS-OF 510 VORKING]>)

There are 5 dia eoses (entropy 2.2388) aoomtin" for .90:
0.263 [[(12 Other)]]

eouposing (e<ASSUIIFUOn +1IN [STATUS-OF U11 VOING]>)

Tero are 5 diagnoses (entropy 2.280) a.oonting for .35:
0.263 ([(512 Other)]]

Decoaposing (9CASSMWNoI +F [STATUS-OF U20 ORKING]))

There are 6 diaposes (entropy 2.233) accouting for .95:
0.263 [[(12 Other)33

itropy Signal; Aliases; Value-nviroment Pairs
0.7167 [CRAIGING-VIT 0 1O000000000 CI (10L 1 N33e]]]

aka [PIS 14 1213 aka II 8 921*.]
((T 8<(11 3 0320>))

[14:12:01] Addin Observation of 1 at

Thre are 2 diagposes (entropy 0.021) accouting for .95:
0.903 [[(512 Other)]

Rutropy Signal; Aliases; Value-Invironmet Pairs
0.9164 [ClNAGING-UIT 0 10000000000 L.L EO 4 563]]

aka (PIN 2 11] alk [IN CLX 511A3
((T #<M 1 0200>))

(14:12:48] Idding observation of I at
ELL. [BaLI 41U63]

Tr are I diagnoses (entropy 0.000) accounting for .95:
1.000 [((U12 Other)]

Probes Diagnoses
(Four) aftervards

1272 88890U89# 10
1290 "8M0 5

18 M0 2
1S6 8 1

T

A.3. AUDIO DECODER EXAMPLE I WITH SYNDROMES 225

A.3 Audio Decoder Example I with Syn-
dromes

he are 1 diagnoses (entropy 0.000) accounting for .95:
1.000 E1]

[14:26:10] Adding obervation of 0 at
ENAZ-IN-w 100000000 [VOLTAGZE(OLE 1 1272]]]

Tre are 10 diagnoses (entropy 3.269) accouting for .95:

0.103 [[(143 Other)]]

.*iining 112 with IACIZ

Colict! There are 10 diagnoses (entropy 3.205) acoounting for .96:
0.163 (((U43 Other)]

There are 10 diagnoses (entropy 3.203) accounting for .96:
0.163 [(U43 Other)]]

lejining U11 with CSI-INACTIVU

Coflict There are 11 diagnoses (entropy 3.320) accounting for .96:
0.163 [[(43 Othr)]]
Tre are 11 diagnoses (entropy 3.320) accounting for .05:

0.163 [[(us Other)]]

i;3ining U10 with CSU-IACTII

Coziiot There are 11 diagnoses (entropy 3.282) accounting for .95:
0.163 [[((43 Other)]]

There are 11 diagnoses (entropy 3.282) accounting for .95:
0.163 [(14S Other)]]

Decomposing (WASSUMPTIO +13r [STATUS-OF 143 VORlING]>)

Thre are 11 diagnoses (entropy 3.262) accounting for .95:
0.163 (U((43 Other)]]

Doeomposing (<ASSUMPTIO +zN7 (STATUS-OF 121 1031110]>)

There are 11 diagnoses (entropy 3.232) accounting for .9:

0.163 ([(U43 Other)]]

Decomposing WL<SSUNPTION +1317 (STATUS-OF 121 VORXINO]>)

There are 11 diagnoses (entropy 3.282) accounting for .95:
0.163 [[((43 Other)]]

Decomposing (#WASSUMPTION +117 (STATUS-OF 121 11031110]>)

226 APPENDIX A. SCENARIO TRANSCRIPTS

iher are 11 diagnoses (entropy 3.232) accounting for .95:
0.163 (143 Other)]]

Docomposing (3(ASSUDI +I (STATUS-0r U44 HOUINa]>)

There are 11 diaposes (entropy 8.282) accounting for .96:
0.163 (((143 omr)]]

Entropy Sipnsa; JAiases; Value-Invironnent Pairs
0.8261 [CNAIJIGI-VIT 0 10000000000 (LL (HOLS 2 1290]]]

nks [PIN 10 U43] ska [ZN Cs U43Al
((T U(M 6 01307>))

(i1:80:37] Adding observation of 1 at
ELL IOLZ 2 S2903

Conflict! There are 3 diagnoses (entropy 2.84) accounting for .9;:
0.156 ((f12 Other)]]

Confliot There are 6 disposes (entropy 2.634) acoutin for .96:
0.203 (((f12 Other)]

Thr are 6 diagnoses (entropy 2.534) accounting for .95:
0.203 E(12 Other)]]

iefining 920 with CSB-INACTIVU

Coflilo There are 6 diagnoses (entropy 2.532) accounting for .95:
0.218 (((f2 Othr)]]

Thro are 6 diagnoses (entropy 2.532) accounting for .95:
0.213 [(((12 Other)]]

Decomposi g (W<ASSMUMON +IV7 (STATUS-OF U12 ou311]>)
There are 6 diagnoses (entropy 2.532) accounting for .95:

0.210 (U12 Othr)]]

Decomposing (W<ssNPTIoN +IVY (STATUs-oa o10 110IG31]>)

There are 6 disnoses (entropy 2.632) accounting for .96:
0.218 (((E12 Other)]]

ecoaposixg (W<ASSMTION +IV (STATUS-oF f11 11031o]>)

There are 6 diagnoses (entropy 2.532) accounting for .95:
0.21 ((12 Other)]]

Decomposing (83ASSMUKPlO +IVI (STATUS-OF ff20 11031116>)

There are 6 diagnoses (entropy 2.532) accounting for .95:
0.213 ([(U12 Other)]3

A.3. AUDIO DECODER EXAMPLE I WITH SYNDROMES 227

ntr opy Siga; Aliase; Value-tvwironst Pairs
1.0000 CLL CUOLE I 1213]]

aka [PIN i; 1103 ae OT Te 1 A3
((0 8<11? 1 04> 8(111 3 04102> #<1T S 020102>))

i1:54:13] Adding observation of 0 at
ELL [BOLZ 1 1218]]

Thro are 0 diagnoses (entropy 2.532) acoounting for .95:
0.218 [((12 Other)]]

ntropy Signal; Aliases; Value-a-vronment Pairs
1.0000 LL (BOLE 1 154]]

aka [ePI 19 V12] eka COOT Z 112*]
((0 <31? 2 04100> 8(11? 2 010100> #<M11 2 020100>))

i1:3s:12] Adding observation of I at
ELL. CIOLI 1 16]]1

There are 2 dianose (entropy 0.381) accounting for .95:
0.701 CC(112 Other)]]

Entropy Signal; Aliases; Value-nvironment Pairs

Probes Diagnoses
(Four) afterwards

1272 8##888 11
1290 88#8 6
1213 ##8 6
N56 82

T

228 APPENDIX A. SCENARIO TRANSCRIPTS

A.4 Audio Decoder Example II

ro are I diagnoses (entropy 0.000) aeouting for .95:
1.000 [0]

iii:06:47] Ada" observation of 0 at
[NAXI-MN-vv 100400000 CYOLTAGZ EZOLZ 1 12723]]

Thr. are 10 dispaoss (onropy 3.260) accounting for .05:

0.163 [[(U43 Other)]]

D"o oposing (<ASUMIW= +IV7 ESTATUS-OF 143 v1031]>)

There are 10 diagnoses (entropy 3.260) accounting for .96:
0.163 [(U43 Other)]

Deomsposing (ASSUUTION +IV [STATUS-of U12 vo0 G3>)

There are 10 diagnoses (entropy 3.260) accounti g for .96:
0.10)3[[(143 Other)]]

Deo*Vposing (#<ASSPTIGo +IV7 (STATUS-Or 144 va&31o16>)

There are 10 diagnoses (entropy 3.269) accounting for .05:
0.163 [(U4S Other)]3

De'omposing (ASSUNPTION +IV7 [STATUS-O 144 11031116>)

Thero are 10 diagnoses (entropy 3.260) accounting for .95:
0.163 [[(U43 Oter)]]

Decoposing (<ASSUNPTIO +IV7 (STATUS-OF 144 VOsz110]>)

There are 10 diagnoses (entropy 3.269) accounting for .05:
0.163 [((143 Other)]]

Decoaposing (WASSUMPTIO +I37 (STATUS-OF 121 VO036]>)

Thr, are 10 diagonoses (entropy 3.260) accounting for .95:
0.163 [[(U4 Other)f]

Ibiropy Signal; Aliases; value-Invironment Pairs
0.8291 [C0ANNGN-WiT 0 10000000000 ML [BOLZ 2 120]]]

aka ePINI 10 143] aka [I cs 143k]
((T 8<M 6 01307>))

(15:12:34] Adding observation of 1 at
[L tUOLZ 2 N00]

Confdlict! There are 6 diagposes (entropy 2.556) accounting for .95:
0.222 [[(12 Otber)]]

A.4. AUDIO DECODER EXAMPLE H 229

There are 9 diagnoses (entropy 2.28) aacomstng for .05:
0.263 C[(12 Oer))]

Deoaposing (w<Asmu oN +xar (sTATuS-Or 110 vwrxucO>)

There are 5 diagnoses (entropy 2.233) aooating for .06:
0.263 [[(12 Other)3]

;;composing (ASSM[PTZ O +IF (STATUS-0F V11 VOUXN]o>)

There are 6 diagnoses (entropy 2.288) accovating for .96:
0.263 [(012 0ther)))

Decompoing ((ASSMUPTIZO +I17 [STATUS-OF 1o20 VORINa>)

Thre ate diagnoses (entropy 2.26) accouting for .06:
0.263 [[((12 Other)]]

htropy Signal; Aliases; Velus-Inviroment Pairs
0.7167 [CRANUING-VRT 0 10000000000 ELL [BOLl 2 1236]]]

aka (PIN 14 44] ak LL 3 1441]
((T #3<1 4 0360>))

(15:14:42] Addi*% observation of T at
(cZAN0110-vaT 0 10000000000 ELL (Nazi 2 1236]]]

Thre are 5 diagnoses (entropy 2.288) accoxmting for .05:
0.263 [[(12 Other)]

Intropy Signal; Aliases; Valiie-Invironment Pairs
0.7167 (CIAIZIG-VRT 0 10000000000 (LL [ZOLi 2 1117]]]

aka [PIN S 144] aka EII 4 U44k]
((T 8<111 4 0360>))

(15:15:57] Adding observation of T at
(CNAFING-T 0 10000000000 (ELL (Lzi 2 1117]]]

There are 6 diagnoses (entropy 2.28) accounting for .96:
0.263 ([((12 Other)]]

Entropy Signal; Aliases; Value-Invironaent Pairs
0.7167 (CKLIGING-WIT 0 10000000000 ELL (loLZ 2 1208]]]

aka [PIN 24 143] aka Ell 7 143A]
((T UM11 3 0320>))

i1:17:06] Adding observation of T at
(CKAIG0I-vWT 0 10000000000 (LL (BOLl 2 1206]]]

230 APPENDIX A. SCENARIO TRANSCRIPTS

Ther. are 5 diagnoses (entropy 2.238) aoounsing for .05:
o.26 (((112 Ot0er)]]

Entropy Signal; Alias ; Val -Eviromnat Pairs
0.7167 [cZANSING-VIT 0 10000000000 ELL Emu 1 3269]]

aka [PINis 21] aka Ell £ 121A3
((T MIT 3 0320>))

(15:13:00] Adding observation of T as
(CANING-VlT 0 10000000000 ELL [3013 1 1280]]

iere are S di, .sos (eoropy 2.238) accomting for .95:
0.263 (((12 oCr)])

EnTropy Sigmal; Aliases; Value-nvwiromem Pairs
0.7167 (c IJGIIG-VT 0 10000000000 E.L (EBL 2 N48]

aka [PIN 26 143] aka EII 11 943A)
(((3 S 0320>))

(1:6131 Adding observation of T at
(CIANOING-VRT 0 10000000000 ELL (ROLE 2 483]33

Ther are ditmposes (entropy 2.23) asoomtin for .06:
0.263 [(((12 other)]]

Entropy Sign al; Aliases; Value-nvironment pairs
0.5610 (CAIGING-VIT 0 10000000000 (LL (ROL 3 N2603]]

aka [PIN 8 U20] ara ElI A 920C]
(MT <31? 1 0200>))

(15:19:42] Adding observation of T at
[CKINGING-VXT 0 10000000000 ELL [OLl 3 1260]]

Thro are 6 diagnoses (entropy 2.288) accoming for .05:
0.263 (E(12 Other)]]

intropy Signal; Aliases; Valuo-2nvironment Pairs
0.5610 (cANGrIG-VIT 0 10000000000 ELL i(LE 2 1232]]

aka (PIN 11 143] aka [IN V V4SA]
(T #<M 01210>))

(11:20:34] Adding observation of T at
(CIANGING-VRT 0 10000000000 [LL [R(OLE 2 1232]]]

ThrO are 6 diagnoso (entropy 2.288) accoumting tor .96:
0.263 (((12 O er)]]

f -~ _ ... n .mn. -w P. o . . .

A.4. AUDIO DECODER EXAMPLE H 231

iatrop7 Signal; Aliases; Value-Invironment Pairi
0.4434 [ING!-VIT 0 10000000000 ILL (30L 2 N213]3]

ek. (PI 3 203 aek [IS U 2oA3
((NIL IT 1 04>))

i15:21:2,] Adding observation ot T as
rCIANCING-VlT 0 10000000000 (LL (301. 2 1213]]

ConoliosI There are I disposes (entropy 0.000) aocounting for .95:
1.000 (120 Other)]]

There are I disposes (entropy 0.000) cocounting for .06:
1.000 ((120 Other)]]

Probes Diagoses
(Tea) alterard

1272 **Sm l#*l 10
1200 WU £
3230 5#8l 5
1117 Sil8 £
1206 IllON _
1289 # 6 5

148 8il8 5
1260 #88M6 £
1232 " 1 5
1213 t 1

T

232 APPENDIX A. SCENARIO TRANSCRIPTS

A.5 Audio Decoder Example II with Syn-
dromes

ere are I diagoses (entropy 0.000) accounting for .96:
1.000 []

(i1:W463: Adding oboervation of 0 as
[AX-MIN:-VW 100600000 VOLTAGI [JBOL I 12733]]

There are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 [[(U43 Otoer)]]

letining 112 with XNACTIVE

Coictl There are 10 diagnoses (entropy 3.203) accounting for .96:
0.163 (((14S 0ther)]]

ere are 10 diagnoses (entropy 3.203) accounting for .9:
0.163 (((143 Othr)])

"iini g VII with CSS-INACTIVE

Con,;]Lotl There are 11 diagnoses (entropy 3.320) accounting for .9:
0.163 [(U(43 Other)]

ero are 11 diagnoes (entropy 3.320) accounting for .96:
0.163 [((U43 Other)]]

lejining V10 wit CU2-INACTIVE

Conflict! There are 11 diagnoses (entropy 5.282) accounting for .96:
0.163 (((14 Other)]]

mere are 11 diagnoses (entropy 3.262) accounting for .96:
0.163 (((143 Other)]]

Decoposing (C<ASSNPTXON +IV (STATUS-OF 143 15VO0110>)

ere are 11 diagnoseo (entropy 3.282) accounting for .96:
0.163 E[(U43 Otlhr)]]

Decomposing (#<cSSMXTION +N, (STATUS-O 121 1501o110]>)

mere are 11 diagnoses (entropy 3.282) accounting for .9S:
0.163 [[((43 Other)]]

Decomposing (<ASSUMPTIOR +IVr (STATUS-OF 121 5VO031N]>)

mere are 11 diagnoses (entropy 3.282) accounting for .96:
0.163 (((143 Other)]]

Decomposing (#<ASSMUPTIOR +I7 (STATOS-OF 121 vo0x3 >)

A.5. AUDIO DECODER EXAMPLE H WITH SYNDROMES 233

Thro are 11 diagnoses (entropy 3.232) accounting for .06:
0.163 [[(U43 Other)]]

Decomposing (#<ASSmwTION +1N7 [STATUS-OF 144 VOKING]>)

There are 11 diaposes (entropy 3.282) accounting for .96:
0.163 [[(43 Other)]]

Entropy Signal; Aliases; Value-Rnvironmont Pairs
0.82093 [CANGOIG-URT 0 10000000000 ELL [HOL 2 1290]]]

aka (PIN 10 143] aka [IN CS 943A]
((T #<May 6 01307>))

i1:53:23] Adding observation of I at
ELL (10L. 2 12o00]

Conflict! There are 9 diagnoses (entropy 2.854) accounting for .95:
0.156 ([(112 Other)]]

Con*flicti There are 8 diagnoses (entropy 2.534) accounting for .95:
0.203 (((12 Other)]

There are 0 diagnoses (entropy 2.6534) accounting for .95:
0.203 ([(U12 Other)]

efining 120 with CSBINACTIVI

ConIlioti There are 6 diagnoses (entropy 2.632) accounting for .96:
0.213 [[(12 Other)]]

There are 6 diagnoses (entropy 2.632) accounting for .96:
0.210 [E112 Other)]]

De;omposixg (ASSUKPTION +INV (STATUS-OF 112 VORKIN3>)

Thero are 6 diapnoses (entropy 2.632) accounting for .95:
0.218 (((112 Other))]

Decomposing (*<ASSUMPTION +IVY ESTATUS-OF1 110 VORINIO>)
T;re are 6 diagnoses (entropy 2.632) accounting for .96:

0.218 [[((12 Other)]]

Decomposing (#<ASSU PTION +r1y (STATUS-0F U11 VORKING]>)

There are 6 disposes (entropy 2.632) accounting for .96:
0.218 (((U12 Other)]]

Decomposing (#ASSUNPTIOE +117 [STATUS-OF 120 VORJCIG]>)

Thero are 6 diapnoses (entropy 2.532) accounting for .95:
0.218 [((U12 Other)]]

234 APPENDIX A. SCENARIO TRANSCRIPTS

Ratropy Signal; Aliases; Value-lvironment Pair.s
1.0000 EU. [HOLZ 1 32133]

aka (ePI is U103 aka [OUT Tc o10*]
((0 #<M 1 04> 8<(1t 3 04102> 8<Z1V 3 020102>))

i4:.6:47] Adding observation of T at
ECIANGING-VIT 0 10000000000 E1.. (BOLE 1 1213]]]

Co,lict Th ere are 1 diagnose. (entropy 0.010) acounting for .95:
0.993 (((120 Other)]]

Ther are I diagnoses (entropy 0.010) accounting for .05:
0.903 [(((20 Other)]]

;obes Diagnoses
(Thre) afterwards

1272 888888888 11
1290 888888 6
1213 8 1

T

A.6. AUDIO DECODER EXAMPLE HII 235

A.6 Audio Decoder Example III

There are 1 diagnoses (entropy 0.000) accounting for .05:
1.000 (03

i11:00:23] Adding observation of 30 as
(IAz-XN-wv 10000000 (VOLTAGZEN(OLE 1 1272333

There are i diagnoses (entropy 0.000) accounting for .95:
1.000 (033

(11:00:32) Ain observation of 2000.0 at
(vEm 50000000 (IL T) [CR051 (lilT 2 11) (VOLTAGZENZ (031 1272]]]]

There are 1 diagnoses (entropy 0.000) accounting for .05:
I1.000 (1]
(11:00:37] Adding observation of 20000.0 at
(VEm 60000000 '(NIL T) (C&OSS 0 (DT (VOLTAGEZ (HoIz 1 12723)3]]

There are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 (((143 Other)]]

Decomposing (*<ASSUMPTION +IN7 ESTATUS-OF 1743 WORK]3)

There are 10 diagnoses (entropy 3.269) accounting for .95:
0.163 E((143 Othker)]]

Decomposing (#ASSI7KPTION +IN7 [STATUS-OF 1712 WORKING]>)

There are 10 diagnoses (entropy 3.269) accounting for .95:
0.163 E((143 Other)]]

Decomposing (#<ASSUMPTION +I17 (STATUS-OF 1744 WORKING]>)

There ate 10 diagnoses (entropy 3.269) accounting for .95:
0.163 (((143 Other)]]

Decomposing (*<ASSUMPTION +117 (STATUS-OF U"4 WORKING]>)

There are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 E((143 Other)]]

Decomposing (#<ASS7MPTION +IN7 (STATUS-OF 1744 WORKING]>)

There are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 ((143 Other)]]

Decomposing (#<ASSUMPTION +IN7 (STATUS-OF 1721 WORKING]>)

There are 10 dispnoses (entropy 3.269) accounting for .96:
0.163 E((143 Other)]]

236 APPENDIX A. SCENARIO TRANSCRIPTS - -

Etropy Signal; Aliases; Value-hnvironmemn Pairs
0.8291 [CCIGIrG-UIT 0 10000000000 ELL (BOLE 2 120333

aka (PI 10 543] aka CI Cs U43A]
(MT <311 6 01307>))

iii:04:42] Adding observation of T as
[CIANGxIO-VET 0 10000000000 ELL (EOLE 2 1290333

Thero are 10 diagnoses (entropy 3.260) acoumting for .05:
0.103 [CCVII Other)]]

iEnropy Signal; Aliases; Value-anrironment Pairs
0.7617 [CCIA1OIN-VrT 0 10000000000 ELL (BOLE 2 12603])

aka CPI 10 01] aka (IN 3r 910A]
((T 8(<31 5 0307>))

E11:05:43] Adding observation of T as
[CCANGIoN-VrT 0 10000000000 ELL BONDL 2 12303]

There are 10 diagWses (entropy 3.260) accounting for .05:
0.108 CC(V4I other)]]

inropy Signal; Aliases; Value-Environmea Pair.
0.761T [CCAXQIG-OrT 0 10000000000 ELL, (IOLE 1 1120]]]

aka [PIN 11 o10] aka EOT 3 9oA]
((T MIT 5 0307>))

(11:06:42] Adding observation of T at
CCKLANGIE-VIT 0 10000000000 CU(OLE 1 1120]]3

Tre are 10 diagnoses (entropy 3.269) accounting for .05:
0.163 CCC943 Other)]]

inropy Signal; Aliases; Value-Environment Pairs
0.7288 [CRANGINO-VIT 0 10000000000 ILL [BOLE 2 11123]]

eka (PIN 21 143] aka [IN 4 U43A]
((T (4 0s60>))

E11:07:43] Adding observation of T at
[CIANIOG-VIT 0 10000000000 (OLL EJL 2 1112]]]

There are 10 diagnoses (entropy 3.260) accounting for .06:
0.163 E(CVII Other)]]

Entropy Signal; Aliases; Value-Environment Pairs

A.6. AUDIO DECODER EXAMPLE HI 237

0.5980 CEANGZIG-VRT 0 10000000000 LL [HOLN 1 166]]]
aka EP1N 14 21] ska CHI 3 2WA
((T #<M 3 0320>))

ii:06:43] Adding observation of T at
ECUAGING-1.T 0 10000000000 ELL EOLZ 1 1]333]

Thre are 10 diagnoses (entropy 3.260) accounting for .96:
0.163 [[(u43 Other)33

E ropy Signal; Aliases; Value-Environment Pairs
0.5690 CCKAING-VIT 0 10000000000 ELL (HOLE 2 N1]]]

aka [P'I 26 U433 aka, El 11 143A]
((T S<11 3 0320>))

i11:00:43] Adding observation of T at
ECANCZIG-WlT 0 10000000000 ELL C(OLE9 2 148]]]

There are 10 diagnoses (entropy 3.269) accounting for .05:
0.163 (((1143 Other)]]

Entropy Signal; Aliases; Value-nvironiment Pair.
0.30 ECIAIGI1G-.IT 0 10000000000 ELL CHOLE 1 123233]

aka (PIE S U223 aka (OUT T V22c]
((T #<say 3 01210))

i1:10:43 Adding observation of T at
[C1JJIING-UIT 0 10000000000 ELL HOL 1 1232]]3

Thero are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 [[((43 Other)]]

Entropy Signal; Aliases; Value-Environmnt Pairs
0.4270 CRAIGING-VRT 0 10000000000 ELL CHOLE 3 11693]]

aka 1P9I 043] ska [IN 2 U43A]
((T *<ENV 2 0140>))

tii:1i:46] Adding observation of T at
[CANiZHI-VItT 0 10000000000 ELL [BOLE 3 1159]]]

.here are 10 dianoses (entropy 3.269) accounting for .95:
0.163 (((143 Other)]]

it'opy Signal; Aliases; Value-Environment Pairs
0.4270 [CHA1G1O-VlRT 0 10000000000 ELL (HOLE 1208]]]

skin [PIN 6 121] aka (DX 2 U2A]

238 APPENDIX A. SCENARIO TRANSCRIPTS

((T #<M 2 0120>))

ii:12:44] Ad ober..&tion of T at
[c1A16136-vT 0 10000000000 [1M.I 1 3208]33

There are 10 diagnoses (entropy 3.260) accounting for .05:
0.163 ([((43 other)]

intropy Sig aL; Aliases; Value-Environment Pairs
0.4270 [CRANIN-VRT 0 10000000000 [L [13. 2 1194]]]

aka [Pxs 20 143] aka [IN 3 VSA]
((T 8<33 2 0140))

ii:13:47] Adding observation, of T at
ECCAIGING-VT 0 10000000000 ELL (1o. 3 1194]]]

Ther are 10 dianoses (entropy 3.260) accounting for .96:
0.163 (((143 Other))]

Eintropy Signal; Aliases; Value-EnvironnAt Pairs
0.4270 [CERNGING-UT 0 10000000000 EL (DOLE 3 11213]]

aka (PIN 22 142] Wks (IN 5 U43A]
((T #<1 2 0120>))

(ii:14:40] Adding observation of T at
(CANGI G-VUT 0 10000000000 ILL (oLN 3 1131]]]

There are 10 diagnoses (entropy 3.260) accounting for .9:
0.163 [[((42 Other)]]

Entropy Signal.; Aliases; Value-Invironnat Pairs
0.4270 [CINXIGIG-VIT 0 10000000000 ELL (10L3 2 1130]]]

aka (PIN 22 143] aka EIN 6 14313
((T 8<N 2 0120>))

(11:15:52] Adding observation of T at
[cIANGING-V1T 0 10000000000 (L [101.3 2 1120]]]

There are 10 diagnoses (entropy 3.269) accounting for .05:
0.163 [(((43 Other)]]

Entropy S 1igna; Aliases; Value-Environnent Pairs
0.4270 [CIANGING-VIWT 0 10000000000 IL [0L.3 1 1246]]]

aka [PI1 6 U211 ka ([I 4 121A]
((T <IT 2 0120>))

A.6. AUDIO DECODER EXAMPLE HI 239

[11:l:533d dinjH observation of I at

Confliotl There are 2 diagnoses (entropy 0.918) acoounting for .96:
0.667 E((21 0ther)]]

here are 2 diagnoses (entropy 0.913) acooumting for .96:
0.607 [(21 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0."9 [CKAN8ZIO-WRT 0 10000000000 [LL [HOLE 2 1236]]

ka [PIZ 14 1443 akan [Z S 344k]
((T UEN1 2 0140>))

i1:17:44) Add observation of T at
(CIANGING-UT 0 10000000000 ELL [iOLE 2 1236]])

There are 2 diagnoses (entropy 0.918) acoounting for .96:
0.667 (((U21 Othr))]

Entropy Signal; Aliases; Value-Environment Pairs
0.6498 [CKANGING-UIT 0 10000000000 (LL [(OLE 2 1117]]

aka [PIN 5 144] U aka [! 4 44A]
((T UM11y 2 0140>))

(11:16:46] Adding observation of T at
(CHANGIG-VIT 0 10000000000 IL (HOLE 2 1117]]]

Thero are 2 diagnose (entropy 0.918) accounting for .95:
0.667 ([(121 Other)]

Entropy Signal; Aliases; Value-Environment Pairs
0.6499 [CAIGING-VRT 0 10000000000 ELL [BOLE 6 1140)]]

aka [PIN 10 u11 aka [IN ElT o113]
((NIL #<1M i 0100>))

iii:19:30) Adding observation of I at
ILL [HOLZ 5 140)]

iiero are 2 diagnosos (entropy 0.918) accounting for .96:
0.667 ((21 Other)]

Entropy Signal; Aliases; Value-Environment Pairs
0.6496 [CIAEGING-VIRT 0 10000000000 L. [HOLE 3 1264])]

aka [PIN 9 u21] aka III CLEAR 121A3
((NIL #< 1 0100>))

240 APPENDIX A. SCENARIO TRANSCRIPTS

C1:20:143 Admn observat ion of 1 at
ELL (DOL 3 164

Coflict! Thero are 1 dianose (entropy 0.000) accounting for .95:
1.000 ((21 Olther)]

There are I diapose (entropy 0.000) accounting for .96:
1.000 ([(121 Other)]]

irobes Diapason
(Twenty) atorwards

1272 # 1
I1272 8 .. 8 . 10
1290 8808888888 10
1280 80888888t 10
1129 808l888888 10
1112 8 10
N33 8 8810
148 88888t8888 10

1232 8088888888 10
150 U100 10
1203 #88888888 10
1194 808888l8010
1131 80l 88 10
1139 8 10
N246 " 2
1230 8 2
1117 80 2
1140 ## 2
124 8 1

T

A.7. AUDIO DECODER EXAMPLE JI1 WITH SYNDROMES 241

A.7 Audio Decoder Example III with Syn-
dromes

There are I dianoses (entropy 0.000) accounting for .96:
1.000 [03

i10:30:043 Addlg oboervation of 30 at
[KU-Xu-WV 100000000 (VOLTAGE (OIOZ 1 127233]

hor. are 1 diagnoses (entropy 0.000) accounting for .95:
1.000 oED
i1:30:12] Adding observation of 2000.0 at
EM11W 50000000 '(iL T) [COSS (EXIT 2 11) (VOLTAGE CHOLE 1 1272]]]]

There are I diagposes (entropy 0.000) accounting for .96:
1.000 [0]

(10:30:17] Addi observation of 20000.0 at
[F(N 50000000 '(NIL T) [CROSS 0 EDT [VOLTAGE [HOLE 1 1272]]]]]

Thoro are 10 diagnoses (entropy 3.269) accounting for .96:

0.163 (143 Other)]]

lefinin 112 with INACTIVI

Coaflictl There are 10 diaposes (entropy 3.203) accomting for .96:
0.163 [[((43 Other)]]

T;re are 10 dip oses (entropy 3.203) accounting for .96:
0.163 [(U43 Other)]]

lijuiing 111 with CS1-IRACTIVI

C onlictW There are 11 dianoses (entropy 3.320) accounting for .95:
0.163 [[((43 Other)]]

Conflict! There are 10 diagnoses (entropy 3.209) accounting for .96:
0.160 [((43 Other)]]

There are 10 diagnoses (entropy 3.209) accounting for .96:
0.168 [[(43 Other)]]

iejining V10 with CS-ZIIACTIVE

Conflict! There are 10 diagnoses (entropy 3.172) accounting for .95:
0.169 [[(143 Other)]]

There are 10 diagnoses (entropy 3.172) accounting for .95:
0.168 [[((43 Other)]]

D;om posing (mmmASS1KuTlOm +11m (STATUS-OF 143 10mm lm]>)

242 APPENDIX A. SCENARIO TRANSCRIPTS

There are 10 diagnoses (entropy 3.172) aoun ting for .06:
0.16 [[(OU Other)]]

" npog (6(ASSMmOo +IRV [STATUS-OP 121 VOmIG]>)

There are 10 diagnoses (entropy 3.172) accounting for .95:
0.160 [(V Other)]]

,;oonposiag (6ASSUVKTON +Xr [STATUS-OF 121 1VOZ10]>)

There are 10 diagnoses (entropy 3.172) accounting for .96:

0.:6 [[(14 other)]]

eomposing ((ASSMUKIO +XV [STATUS-OF 121 UOlfN]>)

Thero are 10 diagnoses (entropy 3.172) accounting for .95:
0.16O [[(143 Other)]]

Dcomposing (ASSPMT +11, (STATUS-OF 14 MORaNGI>)

There are 10 diagnoses (entropy 3.172) accounting for .96:
0.168 [[(1U Other)]]

taopy Sig al; liases; Valu.-lavironneat Pairs
0.8173 [CCIINVl-T 0 10000000000 ELL [BOL 2 r93]]]

eka EPIN 10 9453 ak. Erg CS HIFA
((T MIT 1 @1307>))

[10:36:09] JAdingx observation of ? at
[CAUGINVI-T 0 10000000000 [IL (101. 2 3203]]

Ther. are 10 diagnoses (entropy 3.172) accounting for .95:
0.1" [[(148 Ofher)]]

htropy Sigma; Aliases; Value-Rauironmnzt Pairs
0.7460 [CIANGIN-91T 0 10000000000 ELL1 [ROLl 1 1129]]]

aka. EPIN 11 110] ake. [OUT 3 910A]
((T 6(311 5 0307>))

[10:37:13] Adding observation of T at
[EMMNGIT 0 10000000000 [LL. CR01.21 1129]]]

There are 10 diagnoses (entropy 3.172) accounting for .95:
0.168 [[(143 Other)]]

htrcpy Signa; Aliases; Yalue-haviromusnt Pairs
0.7450 [CNMANG-MT 0 10000000000 ELL. EM0U.2 =23]]

",,,' rl~ r ~ tL9

A.7. AUDIO DECODER EXAMPLE HI WiTH SYNDROMES 243

aks Cris 10 U103 ka [is RUT o10A]
((T *<U1 5 0307>))

i10:38:16] AddJg observation of T aS
CCHAIGz1G-vIT 0 10000000000 [EL, EO l 2 1203]

The are 10 diagnoses (entropy 3.172) accounting for .96-:
0.188 H(43 Other)]]

iEntropy Signa; Aliases; Value-Environment Pairs
0.7093 [CIA18ING-3T 0 10000000000 [U [1.OL3 1 1236333

ek [PIN 10 316] aka EI 10 316]
((T 8<r1V 4 0360>))

i1:39:19] Adding observation of T at
ECIUGING-V'T 0 10000000000 ELL EBOLZ 1 1236]]]

Thre are 10 diagnoses (entropy 3.172) accounting for .95:
0.168 E(143 Other)]]

Ent ropy Signal; Aliases; Value-Environment Pairs
0.7093 [CHA111G-UIT 0 10000000000 ELL (HOLI 3 1117]]]

aka [PIN 18 1U43] aka CIN I VISA]
((T *<1r 4 0360>))

i1:40:22] Adding observation of T at
[CCANINGI-VRT 0 10000000000 ELL [1013 3 111733

There are 10 diagnoses (entropy 3.172) accounting for .95:
0.168 [[(43 Other)]]

Entropy Signal; Aliass; Talus-Environment Pairs
0.7093 [CHAIAzNIG-VRT 0 10000000000 (LL (HOLE 2 1194]]]

aka [PIN 4 U44] aka EI 6 444
((T #<JV 4 0360>))

(10:41:27] Adding observation of T at
[CHANIOIG-VIT 0 10000000000 (LL 101L. 2 1194]]]

There are 10 diagnoses (entropy 3.172) accounting for .96:
0.168 C((43 Othor)]]

Lntropy Signal; Aliases; Value-Invironment Pairs
0.7093 ECHA1A18G-URT 0 10000000000 ELL CHOLE 2 1112]]]

aka [PIN 21 143] aka [IN I 43A]
((T 8<1V 4 0360>))

244 APPENDIX A. SCENARIO TRANSCRIPTS

[10:42:33] Adding observation of T at
[CIAJGING-VUT 0 10000000000 [ELL E101. 2 11123]]

There are 10 diagnoss; (entropy 3.172) accounting for .05:
0.168 [[('is Other)]

Intropy sigma; Aliases; value-Environment pairs
0.5676 [cIAnozis-M~ 0 1o0000000 ELL. [BOLl 2 1206]]]

aka [PE 24 143] aka EIN 7 ViSA]
MC 8(111 3 0320>))

[10:43:38] Adding observation of T at
ECCIAIZXG-VIT 0 10000000000 [U. [BOLE 2 1206]]]

There are 10 diagnoses (entropy 3.172) accounting for .95:
0.160 [[(143 Other)]]

E;topy Signal, Aliases; Value-Ravironment Pairs
0.5N76 [CUAJGIIG-V1T 0 10000000000 ELL. [BOLl 1 1269]]]

aka [PIN 15 121] aka CII 5 V21A3
M(M(11 3 0320>))

[10:44:41] Adding observation of T at
[CIARGING-UI 0 10000000000 CIL [BOLE I N260]]]

&hre are 10 diagnoses (entropy 3.172) accounting for .96:
0.168 [[(143 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.5676 [CKA1GING-VIT 0 10000000000 [U. [11.1 2 146]]]

akan [PIN 26 U43] akan [IN 11 VISA]
((8(<U1 3 0320>))

[10:46:47] Adding observation of T at
[CRIGING-V1T 0 10000000000 ELL [lOLS 2 148333

&hre are 10 diagnoses (entropy 3.172) accounting for .96:
0.166 [[(Vi) Other)]

Entropy signal; Aliases; Value-Environment Pairs
0.5512 ECCUAGING-V1LT 0 10000000000 [U. [301.22 1232]]]

aka [PIE 11 143] aka [IN V1 ViSA3
((T 8(<M 3 01210>))

[10:46:50] Adding observation of T at

A.7. AUDIO DECODER EXAMPLE HI WITH SYNDROMES 245

LCAJz-NG-VUT 0 10000000000 [LL [WoR,. 2 1232]3]

There are 10 diagijos.s (entropy 3.172) accounting for .95:
0.168 [[(143 Ohr)]]

Entropy signal; Aliases; Value-viromment Pairs
0.4377 [CRANGIN-VIT 0 10000000000 ELL CR.LI 1 N139]]]

aka [PN 13 121] aka [II I 121A]
((T UI 2 0120>))

6;:47:r,8 Adding observation of T at
[CCNANGZ-VT o 1ooooo00oo ELL CR01.1 V139333

There are 10 diagnos (entropy 3.172) accounting for .95:
0.108 EE(43 Othor)]]

ELnropy Signal; Aliases; Value-lnvironment Pairs
0.43t? E NINZI-VRT 0 10000000000 [LL (HOLE 1 N131]]]

aka [PIN 7 U21] aka [BI 0 V21A]
((T #<May 2 0120>))

[;:49:08] Adding observation of T at
[CANBZIN-V1T 0 10000000000 [LL [BOL1 1 1131]]]

T"ro are 10 diagnoses (entropy 3.172) accounting for .95:
0.168 [[(143 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.4377 [C1AING-VaT 0 10000000000 ELL [(OLI 2 1244]]]

ak PUX 26 143] aka CIN 9 U43A]
((T 8<U5 2 0120>))

60,:60:151 Addn observation of I atELL [E0L& 2 12"3 3

COnflict, There are 2 diagnoses (entropy 0.923) accounting for .96:
0.660 [[((21 Other)]]

There axe 2 diagnoses (entropy 0.923) accounting for .95:
0.660 ((21 Other)]]

Entropy Signal; Aliases; Valuo-Environment Pairs
0.6498 (CRANGING-RT 0 10000000000 (LL [HOLE 3 11593]3

aka (PIN 19 143] aka [I1 2 1431]
((T #<M1 2 0140>))

246 APPENDIX A. SCENARIO TRANSCRIPTS

E10:51:133 Adding observation of T at
CRIGING-VaT 0 10000000000 ELL [EO1. 3 I159]]]

Thore are 2 dianoses (entropy 0.923) accountig for .05:
0.660 [[(1121 Otbr)]]

htropy S igal; Aliaso; Value-Invironaent Pairs
0.6498 [CKAIGZI-ViT 0 10000000000 [LL [OLE 4 1264]]]

aka oPIN 19 144] aka [IN SI 944A]
((1IL #U<NI 0100>))

[i:52:02] AAddin obsevation of 1 as
ELL1 (301.3 4 N2543]

Conflict , There are 1 diagnoses (entropy 0.016) accouting for .95:
0.990 (((U21 Other)]

There are 1 diagnoses (entropy 0.016) accomting for .96:
0.990 [[((21 Other)]]

Probes Diawos
(Nineteen) aterwards

1272 * 1
N272 "SN• 10
1290 "##. . . 10
1129 8*8U*UU 10
1260 tUUU*##8U 10
123 #$... 10
1117 "IH-II0 10
1194 "MM" 188 0 1
1112 UU#*U 10
1206 "M M! 10
1289 •"888lUU 10
148 8ft•#ftlM 10

1232 8#"M111 10
1139 8 • 89U8 10
1131 tMmt00 10
1246 " 2
1159 "9 2
1254 8 1

T

i i ~ E I I - i + ,

A.8. AUDIO DECODER EXAMPLE IV 247

A.8 Audio Decoder Example IV

Thro are 1 diagnoses (entropy 0.000) accounting for .96:
1.000 [0]

I:i::2] Adding observation of 30 at
[K-NI-WV 100000000 (VOLTAGE EHOLE 1 12723]

Thre are 1 diaposes (entropy 0.000) accounting for .96:
1.000 [(0]

i(2:15:19] Addif observation of 20000.0 at
EW 50000000 '(IL T) [CROSS (IPT 2 11) (VOLTAQ [iOLm 1 1272]]]]

Thre are 1 diagnoses (entropy 0.000) accounting for .96:
1.000 EE33
(20:15:24] Adding observation of 20000.0 at
(111 50000000 '(SIL T) (cRoss 0 DT [VOLTIGE (HOLE 1 1272]]]]]

&here are 10 diagnoses (entropy 3.269) accounting for .95:

0.163 [[(U43 Other)]]

D .ompoin (#<ASSMPTIO +137 (STATUS-OF U43 VORKIN]>)

Thre are 10 diagnoses (entropy 3.269) accounting for .95:
0.163 [[(U43 Other)]]

Decoposing (<ASSUKPTIO +117 (STATUS-OF 12 VOR1110>)

Thre are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 ([(U43 Othser)]]

Decomposing (#<ASSUNPTIO +117 (STATUS-OF u44 VORXING]>)

There are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 [((43 Other)]

Decomposing (#<ASSUMPTION +117 [STATUS-OF 44 VORIIIG]>)

There are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 (((U43 Other)]]

Decomposing (#<ASSUMPTION +17 (STATUS-OF 144 WORKING]>)

There are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 (((U43 Other)]

Decomposing W8ASSUMPTION +IN7 (STATUS-OF 121 WORKING]>)

There are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 [[(43 Other)]]

|I

248 APPENDIX A. SCENARIO 7 iNSCRIPTS

EnVtropy Signal; Aliases; Value-Rnvironment Pairs
0.8291 [CIANI1G-VIT 0 10000000000 ELL [HOL 2 1290]]]

e"a (PIN 10 U43] aka Ell CS U43A]
((T *<11 6 01507>))

(20:19:11] Adding observation of T at
[CwA361G-VIT 0 10000000000 ELL (OLU 2 1290]]]

Thre are 10 diagnoses (entropy 3.269) accounting for .96:
0.163 [[((43 Other)]

1entropy SInl; 100ases; Valu.-hnvironment Pairs
0.761; [CRAOGIG-VRT 0 1000000000 ELL (OLZ 1 1280]]]

aka (PIN 15 U11] aka [OUT TC IU113
((T 8<U1i 6 0307>))

(20:20:14] Adding observation of 1 at
ELL (3OL 1 1280]]

oflict! There are s diagnoses (entropy 2.288) accounting for .96:
0.263 (((U12 Othr))]
There are 5 dianose (entropy 2.238) accoumting for .96:

0.263 [[((12 Other)]]

Zeconposivg (*<ASSUMPTION +11n [STATUS-Y 110 VOHING3>)

There are 6 diagnoses (entropy 2.288) accounting for .96:
0.263 (U12 Other)]]

]ecomposing (ASSXPTIOZ +Ily (STATUS-OF U11 voIlK]>)

There are 6 diagnoses (entropy 2.288) accounting for .96:
0.263 (((U12 Other)]]

D;composing (#<ASSUMPTIO +IN7 (STATUS-OF 120 VO 110]>)

Tre are 6 diagnoses (entropy 2.288) accounting for .96:
0.263 (((U12 Ofthr)]]

Entropy Signal; Aliases; Value-1nvironment Pairs
0.7167 [CIANGI1G-VRT 0 10000000000 ILL (OUL 1 1169]]]

aka (PI s N6] aka (3! 8 uN6A3
((T #<111 4 0360>))

(20:22:36] Adding observation of T at
[c1ANC1IG-VlT 0 10000000000 ELL [OL 19169]]]

T"ere are S disposes (entropy 2.288) accoumting for .96:
0.263 [((12 Other)]]

A.8. AUDIO DECODER EXAMPLE IV 249

ntropy Sigma; Aliases; Value-Invironment Pairs
0.7167 [CEAJNZIN-VIT 0 10000000000 [LL [ROLE I 11943]3

aka (PIo 7 N63 aka EBI 7 RNA3
((T 0<,1T 4 0260>))

b2:22:81] Adding observation of T at
[CKAIGIEG-VRT 0 10000000000 ELL (0L1 1 1194]]]

There are 5 diagnoses (entropy 2.280) accounting for .9:
0.263 (12 Othr)]]

En;ropy Signal; Aliases; Value-Environment Pairs
0.7167 [CIANGIXG-VIT 0 10000000000 (LL [RiOL 2 1139]])

ak [(PIE 23 043] aka El 6 U13A]
((T 8<11 3 0320>))

[20:24:37] Adding observation of T at
[CRIOINO-laT 0 10000000000 [LL [(O11 2 3138]]]

There are 6 diagnoses (entropy 2.208) accounting for .96:
0.263 [[(012 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.7167 [CRANGING-rT 0 10000000000 [LL [HOLE 2 188]]]

eka [PIN 25 043] aka [IN S 043A]
((T #<111 3 0320>))

(i:26:23] Adding observation of T at
[CHANGING-IT 0 10000000000 EL [3OL 2 188]]]

There are 5 diasnoses (entropy 2.288) accounting for .96:
0.263 [[(012 Other)]]

iEnropy Signal; Aliases; Yalue-Environuent Pairs
0.7167 [CRAIGIZG-VRT 0 10000000000 (LL [HOLE 1 1246]3

aka [PIN 5 U21] aka [En 4 1211]
((T *<ENV 3 0320>))

[20:27:21] Adding observation of T at
[CHIANIIG-V1T 0 10000000000 (LL [HOLE 1 1246]]]

There are 5 diagnoses (entropy 2.283) accounting for .96:
0.263 [[(012 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs

250 APPENDIX A. SCENARIO TRANSCRIPTS

0.7167 [CIANCINO-VIT 0 10000000000 ELL [HOLE 1 29]]3
ake EPIN 1s 1213 eke. Cox 5 V214
((M #<M 3 0320>))

[20:23:24] Adding observation of T at;
cRuLzoIG-uT 0 10000000000 EL. (OLE 1 1230]]]

T"b. are S diagnoses (enoropy 2.28) accounting for .96:
0.263 (((12 Other)]]

IEnropy Signal; Alue ; YTle-Environment Pairs
0.7167 ECOAGING-VILT 0 10000000000 lLL [HOLE 2 1483]3

aka [PIN 28 143] ske [IN 11 943A]
((T #<1 3 0320>))

E20:20:22] Adding observation of T as
[CINOING-V.T 0 10000000000 [.. ROL 2 M333

Thre are 6 diagnoses (entropy 2.288) accounting for .05:
0.263 ([(112 Other)]]

Entropy Signal; Aliases; Value-havironment Pairs
o.7166 [CING-OGI-vT o 1ooooo00oo CLL (1OZ1 2 1223]]]

aka (PIN 11 120] aek [ZN A V20D]
((MIL #<M 2 06>))

i[2:30:20] Adding observation of T at
Ecxu&ING-VrT 0 10000000000 ELLEX OLE 2 122333

Cofliot! There are 2 diasnoses (entvopy 0.997) accounting for .96:
0.533 (UVII Othr)]]

Thre are 2 disposes (entropy 0.997) accouting for .95:
0.533 ((111 Other)]]

Entropy Signal; Aliass; Value-Environment Par
0.8367 [E10lGING-VIT 0 10000000000 ELL (10133 N101131

aka [PIN 9 11] ska [IN LOAD U101]
((NIL m 1 O1>))

(20:31:12] Adding observation of T at
(CHALNGIN-VIT 0 10000000000 ELL (HOLE9 3 1101]]]

&re are 1 dipanoses (entropy 0.000) accounting for .96:
1.000 [[(11 Other)]]

Probes Diaposes
(Fourteen) afterwards

A.8. A UDIO DECODER EXAMPLE IV 251

1272 * I
1272 #""S 11 10
1290 888888888 10
1280 88M8 5
150 888
104 8888

1139 68
no8 888

1246 8888
1289 8888

148 885
1223 88 2
1101 I

T

252 APPENDIX A. SCENARIO TRANSCRIPTS

A.9 Audio Decoder Example IV with Syn-
dromes

There are 1 diagnoses (entropy 0.000) accounting for .96:
1.000 110

[09:37:4] Adding observation of SO at
[II-NMI-WV 100000000 [VOLTAGI [(OL 1 127213]

iiere are I diagnoses (entropy 0.000) accounting for .95:
1.000 ED

i:37:57] Ading observation of 20000.0 at
ElW sOOOOOOO '(NIL T) [clOSS (T 2 11) (VOLTAG E I[LE 1 1272]]]]

.here are 1 di% as e (entropy 0.000) accounting for .95:
1.000 (0]

(i:30:02] Adding observation of 20000.0 at
Envr 000000 ,(NIL T) (COSS 0 EDT EVOLTAGE ([MLZ 1 1272]]]]]

There are 10 diagnoses (entropy 3.269) accounting for .95:
0.163 [[(U4 other)]]

iefining 112 with INCTIVE

Con1i1 There are 10 diagnoses (entropy 3.203) accounting for .95:
0.163 [[(43 Other)]]

hro are 10 diagnoses (entropy 3.203) accounting for .95:
0.163 E(U43 Other)]]

E.Sia"n 111 with C53-INACTIVR

Coinlict! There are 11 diagnoses (entropy 3.320) accounting for .96:
0.163 [(1 43 Other)]]

Cof;lict! There are 10 diagnoses (entropy 3.209) accounting for .95:
0.168 [(((43 other)]]

There are 10 diagnoses (entropy 3.209) accounting for .95:

0.166 [[(uss Other)]]

of mning U10 With CS3-INACTIVE

Conf.ict!; There are 10 diagnoses (entropy 3.172) accounting for .96:
0.16 (U43 Other)]]

There are 10 diagnoses (entropy 3.172) accounting for .96:
0.16 [(1943 Other)]]

Decoposing (<ASSMPTIO +z1, (STATUS-or 143 WOmIICG]>)

A.9. AUDIO DECODER EXAMPLE IV WITH SYNDROMES 253

iThr. are 10 diagnoses (entropy 3.172) accounting for .95:
0.18 [[(148 Other)]]

De omposing (#<SSUMPTION +INr [STATUS-Of V21 WO110111>)

Thr* are 10 diagnoses (entropy 3.172) aonmting for .96:
0.168 ([(143 Other)]

ecomposing (WASSUMPTION +117 [STATUS-OF V21 IlOISI]>)

hre are 10 diagnoses (entropy 3.172) accounting for .95:
0.168 [[(U43 Other)]]

Decomposing ((<ASSUNPTIO +117 (STATUS-O 121 1oR0zT1]>)

ere are 10 diagnoses (entropy 3.172) accounting for .96:
0.168 [[(43 Other)]]

Decomposing (<ASSUPTIO1 +Ill [STATUS-OF U44 WOIU[I9]>)

There are 10 diagnoses (entropy 3.172) accounting for .95:
0.168 (0143 Other)]]

Rntropy Signal; Aliases; Valuo-Znvironsent Pairs
0.8173 (ClAIGIG-lT 0 10000000000 ELL HOLZ 2 1290]]]

ak [PIN 10 U43] aka [I CS U43AJ
((T 8<M 6 01307>))

(09:43:12] Adding observation of T at
(CHARGING-VET 0 10000000000 EL. (HOLE 2 12903]

Thre are 10 diagnoses (entropy 3.172) aooounting for .95:
0.108 ([(U43 Other)]]

Entropy Signal; Aliase.; Value-Invironaent Pairs
0.7450 [CIANuI1o-VIT 0 10000000000 ELL [HOLE 1 1280]]]

aka [PIN 16 U11] aka [OUT TC 11A]
((T #<11v 5 0307>))

(09:44:15] Adding observation of I at
[L [HOLE 1 1280]]

Coflict! There are 7 diagnoses (entropy 2.637) accounting for .96:
0.199 [(12 Other)]]

Conflict! There are 6 diagnoses (entropy 2.462) accounting for .96:
0.210 ([(U12 Other)]]

Conflict! There are 5 diagnoses (entropy 2.302) accounting for .96:
0.220 [[(12 Other)]]

254 APPENDIX A. SCENARIO TRANSCRIPTS

There are S diagnoses (entropy 2.302) aceouting for .06:
0.220 [[fU12 Other)]]

itiining 120 with CS3-IIACTIZ

Conflicto There are S diagnoses (entropy 2.262) accouting for .9:
0.238 [[(12 Other)]]

There are 5 diagnoses (entropy 2.292) accoutiag for .96:
0.288 [[(12 Other))]

Decomposing (ASSUM O +117 [STATUS-O 112 VOaLIN]o>)

malre ar. 5 diagnoses (entropy 2.202) accounting for .06:
0.238 ((112 Otber)]]

De oposing (#<ASSMUMZON +11r [STATUS-OP O0 VOUINI]>)

mare are 6 diagnoses (entropy 2.292) accounting for .96:
0.236 C[(U12 Other)]

Decomposing (CASSUMPTIO +117 (STATUS-OF 111 aloKING>)

mare are 5 diagnoses (entropy 2.292) accouting for .96:
0.230 [(U12 Other))]

Dec;omposing (#ASSUXPTION +I17 [STATUS-OF 120 WOuKXlO]>)

mre are S diagnoses (entropy 2.292) accounting for .06:
0.236 (((U12 Oth0r)]]

Entropy Sirmal; Aliases; Yalu&-Ruviromment Pairs
1.0000 ELL LIOLE T1213]

aka (PIl 15 10] aka [OUT TC UO1OA
((0 $<M1 S 04102> 8<111 3 020102>))

609:48:653 Adding observation of T at
(cHANGZNG-T 0 10000000000 (L (BNOL 1 1 s1]

There are 5 diagnoses (entropy 2.293) accounting for .06:
0.239 (((U12 Other))]

Entropy Signal; Aliases; Value-Environment Pairs
1.000 ELL. (BOLE 2 16]]

aka [PIN 12 121] aka EIN CLOCI V21A]
((0 S<iV 2 04100> <111 2 010100> 6<111 2 020100>))

[09:50:15] Adding observation of T at
[CZANGING-VIT 0 10000000000 ELL (BOLE 2 56]]]

A.9. AUDIO DECODER EXAMPLE IV WITH SYNDROMES 255

There ae 5 di'agnoses (entropy 2.292) aoountig for .95:
o.239 (112 Other)3]

Entropy Sipal; Aliasos; Value-Mnvironmnt Pairs
0.7427 [CRAIG C1G-VT 0 10000000000 ELL C1Q . 2 12363]

aka CPII 14 344] aka Ell 3 144*]
((T 8<91T 4 0360>))

C0:51:241 Adding observation of Ta
CIalO-v1T 0 10000000000 ELL [COL11 2 12363]1

There are 5 diagnoses (entropy 2.292) accounting for .96:
0.239 [[(V12 Other)]1

Entropy Signal; Aliases; Value-Environment Pairs
0.7423 [CKAVGIH-VIT 0 10000000000 ELL CRL 2 1117]]]

aka CP 5 144]1 aka BII 4 V44A]
((<M1 4 0360>))

i::s2:26 Adding observation of T as
(CAGING-VIT 0 10000000000 ELL. JL 2 1117]]

Thero are 5 diagnoses (entropy 2.293) accouting for .95:
0.239 CE(U12 0te)11]

Entropy Signal; Aliases; Value-Invironment Pairs
0.7423 ECIAIOTIG-VWT 0 10000000000 ELL CR01 2 1208]]]

aka [PIN 24 431 aka (IN 7 143A]
((T 8<M 3 0320>))

69:s3:35] Adding observation of T at
CcRANCING-nT 0 10000000000 CLM CR0,-1 2 1206]]

There are diagnoses (entropy 2.293) accoumting for .96:
0.239 CC(U12 0ther)]]

Entropy Signal; Aliases; Valuo-Environment Pairs
0.7423 [CIA1GI1G-VaT 0 10000000000 ELL [R0L 1 1289]]]

aka Eil 15 u21] aka CBI 6 V21A]
((T #<11 3 0320>))

i::,4:40] Adding observation of T at
CHANGING-VRT 0 10000000000 ELK. R3 1 1219]]]

Thero are 6 diagnoses (entropy 2.293) accouting for .95:
0.239 [[(112 Other)]]

p

256 APPENDIX A. SCENARIO TRANSCRIPTS

lEntropy Signal; liases; Taluo-Invironmnt Pairs
0.742S ECcANOZI-VILT 0 10000000000 ELL DIOLI 2 14833

aka [PN 26 43] akaEZ I 11 V43*3
((T #<1 3 0320>))

[i:55:42] Ad" obdisation of T at
[CCANGXIG-VrT 0 10000000000 ELL [OL 2 148]]]

Thero are 6 diagnoses (entropy 2.203) accounting for .95:
0.230 [[(112 Other)]]

[¢ir Sinalo;T JAliases; Valuo-fnviroament Paizs
0.03 10000000000 [LL [HOLE 2 1223]]]

aka [PIN 11 20] aka [IT A V20]
((NIL 8<(11 2 05>))

i:56:45] Adding observation of T at
[CK&NGIN-VIT 0 10000000000 [LL r..OL 2 1223]]]

Conflicst There are 2 diagnoses (entropy 0.98) accouting for .96:
0.r67 [[(Vii Other)]]

Tiere are 2 diagnoses (entropy 0.968) accounting for .96:
0.567 [[(MI Othor)]]

Etiropy Signal; Aliases; Talue-Invironmant Pairs
0.8630 [CUAIGIG-9a 0 10000000000 ELL [] oL 3 1101]]]

aka [PIN 9 1ol] aka [II LOAD VIOL]
((TIL <t 1 01>))

[i:57:403 Adding observation of T at
[CCAIGIN-VET 0 10000000000 [LL [101.S 3 N101]]]

Thro are 1 diagnoses (entropy 0.010) accoumting for .95:
0.903 [[(VII Other)]]

Pr;os Diagnoses
(Fourteen) afterwards

1272 # 1
1272 9089088890 10
1290 #811811 10
1210 88890 5
E213 98M0 5

1236 888905
1117 90888 6
1209 88888 5
1289 888 5
148 9080 5
12= " 2

A.9. AUDIO DECODER EXAMPLE IV WITH SYNDROMES 257 -

1101 # I
T

258 APPENDIX A. SCENARIO TRANSCRIPTS

A.1O Input Encoder Example I

There are 1 diagnoses (entropy 0.000) acaouting for .96:
1.ooo (02 [

i1:19:202 Adding observation of T at
EPOU (IN POvu s370]]

There are 1 diagnoses (entropy 0.000) accounting for .95:
1.000 (02

6:22:171 Ada- observation of 0 at
(LL [(OL 2 163 2

There are I diagnoses (entropy 0.000) accounting for .95:
1.000 ([]2

(16:22:273 Addin observation of I at
ELL (101.1 2 193 1

Thro are I diagnoses (entropy 0.000) aocoumting for .96:
1.000 (0]3

E10:23:233 Add.1 observation of 0 at
ELL (10L 2 103 1

There are I diagnoses (entropy 0.000) accounting for .96:
1.000 (0]

i1:25:042 Adding observation of NIL at
Em Iis PAD U] I

There are I diagnoses (entropy 0.000) accounting for .95:
1.000 [0

i1:-6:06 Adding observation of NIL at
KS [IN WVa 3]]

here are I diagnoses (entropy 0.000) accounting for .96:i.ooo (02

(16:25:11U IASim observation of NIL at

There are 1 diagnoses (entropy 0.000) accounting for .95:
1.000 (0]

(16:25:12 Adding observation of T at
(CHANGINO-VRT 1000000000 10000000000 ENP [IN DI U]]]

Thee are 1 diagnoses (entropy 0.000) accounting for .95:
1.000 (02

A.10. INPUT ENCODER EXAMPLE 1 259

E16:25:163 Adding observation of T l
[CKIGIG-ViT 1000000000 10000000000 i [II MDT U332

There are I diagnoses (entropy 0.000) accounting for .06:
1.000 [0

ii:25:192 Adding observation of NIL at
[C]ANGING-VIT 1000000000 10000000000 [NP [ll 1B U]

T"ere are I diagnoses (entropy 0.000) accounting for .95:
1.000 [E33

ii:25:22 Adding observation of NIL as
(CEA]GING-VIT 1000000000 10000000000 [XP [OUT VDI C]]]

iiere are 18 diagnoses (entropy 3.932) accounting for .9S:
0.13o [[(2s Other)]]

;ining U25 with OPu

ih;r are 18 diagnoses (entropy 3.931) accounting for .95:
0.136 [[((25 Open)]]

D);omposeng (#<ASSNPWTION +17 (STATUS-OF U25 VOXING]>)

Th;re are 18 diagnoses (entropy 3.931) accounting for .96:
0.136 [[((25 Open)]]

Deomposing (<ASSUXPTION +117 [STATUS-OF U33 VORKING]>)

Th;re are 18 diagnoses (entropy 3.931) accounting for .95:
0.135 [(E2 Open)]]

Decomposing (8ASSMNPTIOX +I17 ESTATUS-07 134 VOIKINO]>)

Thero are 18 diagnoses (entropy 3.931) accounting for .96:
0.136 E1(f25 Open)]]

(16:31:28] Adding observation of NIL at
[czANGzNG-WRT 1000000000 10000000000 (Np (OUT DY C]]]

There are 18 diagnoses (entropy 3.931) accounting for .96:
0.135 ((125 Open)]]

[16:32:39] Adding observation of NIL at
[CE]GQIIG-ViT 1000000000 10000000000 [NP [OUT NB C]]]

There are 18 diagnoses (entropy 3.031) accounting for .95:
0.13S [(125 Open)]]

itropy Signal; Aliases; Value-Environment Pairs
0.9890 cEwaruzb1-WRT 1000000000 10000000000 [L [ROLE 1 1178]]]

aka [PIN 36 U34] aka [BI 20 V341

260 APPENDIX A. SCENARIO TRANSCRIPTS

((T *<UT 9 0777>) (NIL #<<U 14 01777036>))

i16:3:433 Addi observation of 1 at
(U., (BOr~l I Ni7t]]

There are 9 diagnoses (entropy 2.396) accounting for .95:
0.20 EE((25 Open)]]

Entropy Signal; Aliases; Value-Environment Pairs
1.0448 [CNAJLING-WIT 1000000000 10000000000 ELL. (BOLE 1 N267133

ara (PIN 10 r7] aka (B 10 MA]
((T 8<13T 6 077>) (NIL *<U1 6 02000073))

i1:39:263 Adding observation of 156260.0 at
[FVW 040000 '(1 0) ELL [BOL I N273]]

(16:40:20] Adding observation of 156250.0 at
FW 640000 (0 1) [L (BOLE I N267]]]

There are 7 diagnoses (entropy 2.616) accounting for .96:

0.332 (934 Other)]]

Decomposing (<ASSMPTION +117 (STATUS-OF 130 VOKING]>)

Tre are 7 diagnoses (entropy 2.616) accounting for .95:
0.332 [[((34 Other)]]

Dcomposing (#<ASSU'PT IO +rsN (STATUS-OF 14 V OzNG]>)

There are 7 diagnoses (entropy 2.616) accounting for .95:
0.332 [[((34 Other)I]

Decomposing (<ASSMPTON +IV (STATUS-oF U32 VOXnNo]>)

There are 7 diagnoses (entropy 2.616) accounting for .95:
0.332 ([(134 ther)]

Entropy Signal; Aliases; Value-Inviroment Pairs
0.8879 (ClAIGIG-VatT 1000000000 10000000000 (U. (BOLE 3 1162]]]

eka (PIN 4 133] aka Ell RUIST 1U33
((T #<Ilr 0302>) (NIL #<M11 6 0437> 8<31 6 0473>))

i1:46:29] Adding observation of 0 at
EU. (BOL 3 1162]]

(16:46:41] Adding observation of I at
. [BOLE 3 N162]]

There are 6 diagnoses (entropy 2.070) accounting for .95:
0.442 ([(134 Othr)]]

"- I I lll t l- I i-------i--

A.1O. INPUT ENCODER EXAMPLE I 261

Entropy Signal; Alias.e; Value-fnvironaent Pairs
0.4987 (CEA IG-VIT 1000000000 10000000000 (ELL- [HOLE 1 1130]]]

aka [PIN 6 132] aka (OUT T 32C]
((T #<MV 4 036> #<INV 5 07>) (NIL #<11T 4 02000031>))

i16:47:453 Adding observation of 5000000.0 at
[FW 20000 '(0 1) ELL (HOL 1 1130]]]

There are 6 diagnoses (entropy 2.031) accounting for .06:
0.443 [(u34 Other)]]

Entropy Signal; Aliases; Value-Enviranment Pairs
0.4724 ECIANOXIO-VRT 1000000000 10000000000 ELL (BOLE 2 1243]]]

k (PIN 3 U33] aka (EI ITAL2 U3313
((T #<3N 4 036> *<I1V 5 073>))

(16:49:27] Adding observation of 5000000.0 at
(F7V 20000 '(1 0) ELL [OLZ 2 1243]]]

There are 8 diagnoses (entropy 2.081) accounting for .96:
0.443 (U34 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.4724 E(CAICING-VT 1000000000 10000000000 ELL (HOLE 1 184]]]

a [PIN 10 132] aka (OUT T U321]
((T #<UV 4 036> #<11V 5 073>))

ii:s1:01] Adding observation of 000000.0 at
[7W 20000 '(0 1) (LL [HOL 1 184]]

mere are S diagnoses (entropy 2.081) accounting for .96:
0.443 M(M34 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.4724 [CRNIIGZO-VaR 1000000000 10000000000 ELL [OLE 4 173]]]

aka [PIN 2 U34] aka [IN ITALI U34A]
((T *<INV 4 036> *<11NV 073>))

(16:52:33] Adding observation of 6000000.0 at
(7W 20000 '(1 0) (LL [HOL 4 173]]]

mere are S diagnoses (entropy 2.081) accounting for .06:
0.443 (((U34 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.4724 (CHAIGIN-vWT 1000000000 10000000000 [CC CSMHZL]]

. -l m e u m m a i la aM m I

262 APPENDIX A. SCENARIO TRANSCRIPTS

ake [PIN 3 533] aka (I XTIAL2 V33A3
((T *<11? 4 035> 8<1V 5 073>))

i(1:54:06] AdAin observation of t000000.0 at
E1W 20000 '(11 T) [CC CSrxZL3]

There are 3 diagnoses (entropy 1.321) acooumting for .96:
0.624 (((34 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.2806 ECKANGT1G-WIT 1000000000 10000000000 ELL [O(L 1 145)]

aka [PIN 4 532] aka [OUT V U323]
((T #<ZEV 2 014> 8<11? 3 031>) (NIL *<8(r 2 02000010>))

i1:55:41] Adding observation of 1.0.7 at
(7w 10000 '(0 1) [LL [(OLE 1 145]]]

[16:55:52] Adding observation of 1.0.7 at
(7ww loooo '(1 o) ELL OL 1 145]]

There are 3 diagnoses (entropy 1.321) accoumtiug for .95:
0.624 (((U34 Other)

Entropy Signal; Aliases; Valu.-Environment Pairs
0.2799 [CIIOI1G-W]T 1000000000 10000000000 [CC CS1RZKJ]3

aka [PIE 2 U343 aka [II U 93L 341]
((T S<cv 1 010>))

i1:57:06] Adding observation of 5000000.0 at
(7W 20000 ,(NIL) (cc Cspm1]]

There are 2 diagnoses (entropy 0.721) accounting for .96:
0.600 E[(34 Other))]

nt ropy Signal; Aliases; Valu.-lnvironmunt Pairs
0.2570 [CIACINGI-VIT 1000000000 10000000000 ELL [ROLE 6 157]]

aka [PIN 9 U26] aka [IN LOAD U26A]
((IL 8<11 1 02>))

(6*:6:21] Addin~ observation of 1 at
ELL (BOLl 6 157 f]

There are 1 diagnoses (entropy 0.000) accoumting for .95:
1.000 [(34 Other)]]

0;

: ., i l i I I I I • I1

A.11. INPUT ENCODER EXAMPLE II 263

A.11 Input Encoder Example II

Tiere are 1 diagnoses (entropy 0.000) accounting for .95:
1.ooo [0]

[10:27:371 Adding observation of T at
[pown [l PoeU s37o]]

There are 1 diagnoses (entropy 0.000) accounting for .95:
1.000 [0]

E1:0:20]Z Ad observation of 0 at

There are 1 diagnoses (entropy 0.000) accounting for .96:
1.000 []3

ii:30:27] Ad din obse-ton of I at
ELL (oL 2 3s]]

Thre are 1 diagnoses (entropy 0.000) accounting for .96:
1.000 [[]

i1:21:02] Addin obser.tion of 0 at
ELL rOLe 2 13s]]

There are 1 diagnoses (entropy 0.000) accounting for .95:
1.000 1(0]

[10:3O:20] Adding observation of IlL at
[KS EIN PAD U]]

iThre are 1 diagnoses (entropy 0.000) accounting for .96:
1.000 []

[10:33:25] Adding observation of NIL at
(KS Ell KID U3]

There are I diagnoses (entropy 0.000) acto,.ting for .96:
1.000 [[]]

[10:33:30] Adding observation of NIL at
X (OUT XTS CJ3

There are 1 diagnoses (entropy 0.000) accounting for .96:
1.000 [[]

[10:33:31] Adding observation of T at
[CKAIGTNG-WRT 1000000000 10000000000 IMP [I XDI U]]3

There are I diagnoses (entropy 0.000) accounting for .95:
1.000 [E]]

264 APPENDIX A. SCENARIO TRANSCRIPTS

[10:33:34] Adding observation of T at
[cnuoaxc-uR? ioooooooo 100oo0ooo xP [IN xDT u]]]

Thre are 1 diagnoses (entropy 0.000) accounting for .95:
1.000 CD]
(10:33:383 Adding observation of NIL at

(CHANG I1-WRT 1000000000 10000000000 [E EIN B U33]]]

There are 1 diagnoses (entropy 0.000) accounting for .95:
1.000 EE]

i1:33:42] Adding observation of NIL at
(ClANGING-VaT 1000000000 10000000000 MP (oUT MDI C]]]

thre are 18 diagnoses (entropy 3.932) accounting for .96:

0.136 [((26 Other)]]

ejiining 125 with OPEN

There are 18 diagnoses (entropy 3.931) accounting for .95:
0.135 E((25 Open)]]

Decomposing (#ASSWNTIOI +117 (STATUS-OFP 126 W101111])

There are 13 diagnoses (entropy 3.931) accounting for .96:
0.135 E((25 OpenL)]]

Decomposing (#ASSUNOTION +117 ESTATUS-OP 133 11011110])

There are 18 diagnoses (entropy 3.931) accounting for .96:
0.135 (((125 Open)]]

Decomposing (S<ASSUMTZON +1N, (STATUS-Or 134 VOXING] >)

There are 18 diagnoses (entropy 3.931) accounting for .96:
0.135 (((U25 Open)]]

(10:40:29] Adding observation of NIL at
ECIANcIIG-vaT 100000000 100000000 (NP (OUT MDT C]]]

T"ere are 13 diagnoses (entropy 3.931) accounting for .96:
0.135 E(1S Open)]]

(10:41:29] A " observation of NIL at
(C~ivAIG -vIT 10000000 100000000 (NP (OU ND c]]]

There are 18 diagnoses (entropy 3.931) accounting for .96:
0.135 E[((25 Open)]

Entropy Signal; Aliases; Value-Environment Pairs
0.9898 CRiNGING-I0T 1000000000 10000000000 (ULL (DLI 2 1178]]]

aka (PIN 1 331 ka [IN TO U33A]

A.11. INPUT ENCODER EXAMPLE II 265

((T #<MV 9 0777>) (NIL #<SCl 14 01777036>))

ii;:44:28] Adding observation of T at
[CEibaING-VT 1000000000 10000000000 ELL (HOLE 2 1178]]]

There are 13 diagnoses (entropy 3.465) accounting for .95:
0.179 [[(U26 Open)]]

E,-ropy Signal; Aliases; Value-Environment Pairs
0.8188 ECHANGIIG-WIT 1000000000 10000000000 . [ROLE 1267]]]

aka [PIE 10 117] aka CHI 10 RTA]
((T 8<IN 6 077>) (NIL #<O1 6 02000073>))

60,:46:41] Adding observation of 156250.0 at
ErW 640000 '(1 0) ELL [HOLE 1 1257]]]

[10:47:11] Adding observation of 156250.0 at
[FW 640000 '(0 1) ELL [HOLZ 1 1257]]]

There are 12 diagnoses (entropy 3.404) accounting for .95:

0.165 [((U33 Other)]]

Decomposing (8CASSUNPTIT +rr [STATUS-OF 016 WORKIN3]>)

There are 12 diagnoses (entropy 3.404) accounting for .96:
0.165 [1033 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.3894 [UT 1000000002 2052428803 (LL [HOLE 1 181]]]

aka [PIE I U22] aka ElN B U22B]
((1 *<SIT 8 0100373> #<ENV 8 0100337>))

(;:49:473 Adding observation of I at
ELL [HOLE 1 161]]

There are 12 diagnoses (entropy 3.404) accounting for .95:
0.165 [(33 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.3894 (UT 1000000002 2062428803 LL [HOLE 4 1137]]]

aka [PIE 10 U34] aka [IN Wi U34A]
((1 *<E1V 8 0100373> *<ENV 8 0100337>))

(;:51:39] Adding observation of 1 at
(LL [HOLE 4 1137]]

There are 12 diagnoses (entropy 3.404) accounting for .95:
0.16s [U3s Other)]

266 APPENDIX A. SCENARIO TRANSCRIPTS

Eniropy Signal; Aliases; Valuo-Environent Pairs
0.3894 (EWT 1000000002 2062428803 ELL [HOLZ 2 i1]]]

aka [PIS 22 16] aka EIll 01 ISA]
((1 8<311 8 0100373> *<INV 8 0100337>))

i1:53:28] Addi obser.ation of I at
ELL [sOLE 2 111]]

There are 4 diagnoses (entropy 1.770) accounting for .95:

0.488 C(M Other)]]

Decomposing (W<ASSUPTIO +117 [STATUS-OF 130 voaxiKG]>)

Thre are 4 diagnoses (entropy 1.770) accounting for .96:
0.488 (((US Ot r)]]

Decomposing 8<ASSUMPTIO +IW1 (STATUS-OF U32 V0UOIN0>)

There are 4 diagnoses (entropy 1.770) accounting for .95:
0.488 [[((33 Othr)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.6267 [CHANGING-VIT 1000000000 10000000000 ELL [RO3E 1 1130]]]

akn [PIS 6 132] aka [OUT Y U32C
((T 8<111 4 036> 8<31 6 073>) (NIL *<11L 4 02000031>))

i:5 :36] Adding observation of 5000000.0 at
(Y 20000 '(0 1) ELL (301. 1 N1130]]

Thre are 4 diagnoses (entropy 1.771) accounting for .96:
0.490 [[((33 Other)]

Entropy Signal; Aliases; Yalue-Invironment Pairs
0.4973 [CHANGZNG-VST 1000000000 10000000000 ELL [HOL (X 173]]

aka [PIN 2 U34] aka [IN ITALI U34A3
((T 8<11V 4 036> 8<11 6 073>))

(10:59:05] Adding observation of 5000000.0 at
(vy 20000 '(1 o) E.. (3o1 4 1733]]

There are 4 diagnoses (entropy 1.771) accounting for .96:
0.490 (((U33 Other)]

Entropy Signal; Aliases; Value-Environment Pairs
0.4973 [CIAITI1G-VST 1000000000 10000000000 (CC CsNMzL]]

aka [PIN 3 U33] aka EIN ITAL2 U33A]
((T #<1V 4 035> #<31I 6 073>))

A.11. INPUT ENCODER EXAMPLE II 267

iii:oo:3J Adding observation of 5000000.0 at
FVw 20000 ,(NIL T) [CC C6NHZL3]

Thre are 1 diagnoea (entropy 0.048) accounting for .96:
0.966 E[(U33 Other)]]

Appendix B

Abstractions and Behaviors

The following definitions are discussed in Chapter 5 and collected here al-
phabetically. Keep in mind that their purpose is mental hygiene, not exe-
cution. The procedural style of definition has advantages of expressiveness
that outweigh its disadvantages. The expressiveness advantage is that the
language is simple enough that it is possible to introduce compound defini-
tions through composition of existing definitions and surface transformations
of the results; the rh behavior (Appendix C) is an example of this technique.
The disadvantages that such transformations would be difficult to automate
and intractable in general is a long-term concern, but not an overriding one.
Likewise, the inefficiency of the procedures defined in some cases is not a
concern, since the troubleshooting program does not use these procedures
directly. Finally, there is no compelling reason that a more declarative rep-
resentation could not have been used - but the same tractability problems
would still arise: using a temporal logic as in [Moszkowski82], for example,
would not solve the problem of transformations being intractable.

accum lated-bits an
(lambda (S V D)
(lambda (time)

(if (S time) 0
(let ((previous

((accumlated-bits S V D) (- time))))
(if (V time)

(+ (it (oq (D time) 1) 1 0)
previous)

previous)))))

268

269

brightness -
(lambda (; C1 C2 Kbd Kpd N)

(lambda (time)
(let ((the-state ((c-state R CI C2 Kbd Kpd M) time)))

(it (eql 'init the-state) 128
(max 0
(min 255
(+ (it (eql 'local the-state)

((- ((duration
(key-is-pressed 'B Kbd)) time)

((duration
(key-is-pressed 'D Kbd)) time))

3msec) 0)
((brightness R CI C2 Kbd Kpd M)

(- time
((duration

(c-state R CI C2 Kbd Kpd M))
time))))))))

changing-urt
(lambda (lb ub S)

(lambda (time)
(and (- time ub)

(> ((count-ww (- ub lb) (change S)) time) 0))))

count-ww
(lambda (n S)

(lambda (time)
(if (<= n 0) 0

(+ (it (S time) 1 0)
((count-wv (- n 6) S) (- time))))))

cross =M

(lambda (v S)
(lambda (time)

(let ((sO (S (- time 6 6)))
(s2 (S time)))

(or (< sO v s2) (< s2 v sO)))))

cycles-wv
(lambda (n 1 S)

(count-wv n (sequence 1 S)))

L

270 APPENDIX B. ABSTRACTIONS AND BEHAVIORS

dt --
(lambda (S)

(lambda (time)
(l t ((80 (S (- time 6)))(81 (s tisM)
U/ (- 21 80) 6))

duration -=
(lambda (S)

(lambda (time)
(if ((chane S) time) tie6))):fal -- (+ 8 ((d u r a t i on S) (-time M)M)

fall
(lambda (C)

(lambda (time)
(and (- 0 (C time))

(I (C C- tim 6))))))

(lambda (n 1 S)
(lambda (tim)
(/ (cyclos-wv n 1 S) n)))

event --
(lambda (from to S)

(lambda (time)
(and (equal (S time) to)

(not (equal (S (- time 6)) to))
(or (eql from :any)

(equal from (S (- time)))

gray-event - J
(lambda (SO S)

(lambda (time)
(or ((change SO) time) ((change SI) time))))

kbd-events --
(keyboard-events kbd- state)

271

kbd-state
(samp (fall kbd-reset)

(accumulated-bits
(fall kbd-reset)
(rise kbd-clk) kbd-data))

keyboard-events -

(lambda (S)
(lambda (time)
(if ((stay S) time) nil

(let ((previous (S (-time 8)))
(current (S time))

(list
(pos->key (log (logxor previous current) 2))
(if (< previous current) 'up 'down))))))

key-is-pressed -
(lambda (key Kbd)

(lambda (time)
(if (eql (list 'up key) (Kbd time)) t

(if (eql (list 'down key) (Kbd time)) nil
((key-is-pressed key Kbd) (- time 6))))

Mouse-di -

(tsign
(count-ww Isec

(gray-event mouse-left mouse-right)))

register -a
(lambda (C D)
(lambda (time)

(if ((fall C) time) (D time)
((register C D) (- time 6)))))

samp -- sample-and-hold
(lambda (V S)

(lambda (time)
(if (V time) (S time)

((samp V 5) (- time 6)))))

272 APPENDIX B. ABSTRACTIONS AND BEHAVIORS

sequence --
(lambda (1 S)

(lambda (tim)
(or (null 1)

(if ((stay S) time)
((sequence 1 S) (- time 6))
(and (oql (car (last 1)) (S (- time 6)))

((sequence (butlast 1) S)
(- tim 6)))))))

*'t(mlda Cx) (if Cc x 0) '- (if C> x 0) '+ O)))

synchronous-dlay syn-dol a-
(lambda (n v s)

(lambda (time)
(if (V time)

(if (. n 0)
(S time)
((syncbronous-delay (- n 1) V 5) (- time 6)))

((synchronous-delay n V S) (- time 6)))))

syn-register -
(lambda (V S) (synchronous-delay I V S))

to~l 1
(m (s)

(lambda (time)
(if ((fall) tim)

(invert ((toggle S) (- time)))
((toggle s) (- time 6)))))

tsign =-
(lambda CS)

(lambda (time)
(sign (S time))))

two-phase-clock --
(lambda (phil phi2)

(sequence '((0 0) (1 0) (0 0) (0 1))
(lambda (time) (list (phil time) (phi2 time)))))

Appendix C

Reset Hold Counter Behavior

Section 5.8.1 alluded to the fact that the temporally abstract behavior for
the Reset Hold Counter component could be derived from the behaviors of
its subcomponents. The actual transformations are given here.

Consider the behaviors of the three components of the Reset Hold Counter
(Figure C.1). The behavior of the inverter is tinvert, the behavior of the
AND gate is tand, and the k-bit counter's behavior is represented by counter
(nthbit is an auxiliary function, not a behavior).

tand -
(lambda (X Y)

(lambda (tim)
(it (and (oql (X time) 1) (oql (Y time) 1)) £ 0)))

counter --
(lambda (k R C)

(lambda (time)
(if (sql 0 (R tim)) 0

(mod
(+ (it ((fall C) time) 1 0)

((counter k R C) (- time)))
(expt 2 k)))))

nthbit --
(lambda (i n) (load-byte n i))

273

274 APPENDIX C. RESET HOLD COUNTER BEHAVIOR

Figure C.1: Reset Hold Counter

14Bi t '' N b Run

Counter

Reset

Clock

LThe behavior of the connected group of components is represented by

prevents rh-stat. from being circularly defined; the deay could have been
introduced anywhere in the loop. The behavior rh is then the behavior of the
entire aggregate structure; it is simply the most significant bit of the state.

rh -
(lambda (R C)

(lambda (time)
(nthbit 13 ((rhatate R C) time))))

rh-state ==
(lambda (R C)
(counter 14 R

(tend C
(tinvert

(lambda (time)
(nthbit 13

((rh-state R C) (- time delta))))))))

275

Defining the behavior rh and its underlying behavior rh-stato does not
simplify anything, it merely composes the several behaviors into one.

rh-stato --

(lambda (R C)
(counter 14 R

(tanL C
(tinvert

(lambda (time)
(nthbit 13

((rh-state R C) C- time delta))))))))

rh
(lambda CR C)

(lambda (time)
(nthbit 13 ((rhstate R C) time))))

The following transformations simplify rh-etate'F definition so 11sat it
takes on values from 0 to 213 instead of 0 to 214:

The use of counter is removed by substitution:

(lambda (R C)
((lambda (k a C)

(lambda (time)
(if (eql 0 (R time)) 0

(mod
(+ (if ((fall C) time) 1 0)

((counter k R C) (- time delta)))
(ezpt 2 k)))))

14 R
(tand C

(tinvert
(lambda (time)

(nthbit 13
((rh-state R C) (- time delta))))))))

Substitution for k, R, and C promotes the (eql 0 (R time)) condition:

276 APPENDIX C. RESET HOLD COUNTER BEHAVIOR

(lambda (R C)
(lambda (time)

(if (.ql 0 (R time)) 0
((lambda (CC)

(mod
(+ (it ((fall CC) time) 1 0)

((counter 14 R CC) (- time delta)))
(expt 2 14)))

(tand
C (tinvert

(lambda (time)
(nthbit
13 ((rh-state R C)

(time delta))))))))))

The term (counter 14 R CC) is equivalent to (rh-state R C) and can
be substituted:

(lambda (R C)
(lambda (time)

(if (oql 0 (R tim.)) 0
((lambda (CC)

(mod
(+ (if ((fall CC) time) 1 0)

((rh-state R C) (- time delta)))
(ezpt 2 14)))

(tand
C (tinvert

(lambda (time)
(nthbit
13 ((rh-state R C)

(- time delta))))))))))

With only one reference to CC remaining, it can be substituted for:

L i i i W i -!. -, , -..

277

(lambda CR C)
(lambda (time)

(if (oql 0 (R time)) 0
(med

(+ (if ((fall
(tand

C (tinvert
(lambda (time)

(nthbit
13 ((rh-state R C)

(- time delta)))))))
time) 1 0)

((rh-state R C) (- time delta)))
(oxpt 2 14)))))

We can now case split on whether the term (nthbit 13 ...) is 1 or 0:

(lambda (R C)
(lambda (time)

(if (.ql 0 (R time)) 0
(if (eql 0 (nthbit

13 ((rh-state R C) (- time delta))))
(med
(+ (if ((fall C)

time) 1 0)
((rh-state R C) (- time delta)))

(expt 2 14))
(mod
(+ (if ((fall (lambda (time) 0))

time) 1 0)
((rh-state R C) (- time delta)))

(oxpt 2 14))))))

Simplifying the else-part of the resulting condition yields:

278 APPENDIX C. RESET HOLD COUNTER BEHAVIOR

(lambda (R C)
(lambda (time)
(if (eql 0 (R time)) 0

(if (oql 0 (nthbit
13 ((rh-state R C) (- time delta))))

(* (it ((fall C)
time) 1 0)

((rh-state R C) (- time delta)))
(oxpt 2 14))

((rh-state R C) (- time delta))))))

The condition (oql 0 (nthbit 13)) can be expressed in an alterna-

tive way as (< x (expt 2 13)):

(lambda (R C)
(lambda (time)
(if (eql 0 (R time)) 0

(if (< (oxpt 2 13)
((rh-state R C) (- time delta)))

(mod
C. (if ((fall C)

time) 1 0)
((rh-state R C) (- time delta)))

(oxpt 2 14))
((rh-state R C) (- tim dolta))))))

This allows us to drop the mod term from the if-part:

(lambda (R C)
(lambda (tim)

(if (eql 0 (R time)) 0
(if (< (oxpt 2 13)

((rh-stato R C) (- time delta)))
((if ((fall C)

time) 1 0)
((rh-state R C) (- tim delta)))

((rh-state R C) (- time delta))))))

Finally, the conditional can be formulated as a min expression:

...=i i l l -- mi li i lOwossom

279

(lambda (R C)
(lambda (time)

(it (eqi 0 (R time)) 0
(min (.zpt 2 13)

(+ (if ((fall C) time) 1 0)
((rh-state R C) (- tim delta)))))))

The following schema says that moment-by-moment conditional counting
of ?Y can be replaced with "jumps" of duration ?n, when ?X is periodic and
?F is monotonic:

?SELF a-
(lambda (?X ?Y)

(lambda (time)
(if (?X tim.) 0

(?F (+ (it (?Y time) 1 0)
((?SELF ?I ?Y) (- time delta)))))))

?SELF ==
(lambda (? ?Y)

(lambda (tim)
(if (X? tim) 0

(let ((I (count-w ?n ?Y)))
(?F (if (< n ((duration ?M) time))

(+ (N time) ((?SELF ?I ?Y) (- time ?n)))
(, (N time)

(((duration ?X) time) ?n))))))))

When this transformation is applied to a rewritten definition of rh-state
called new-rh-state, the following results:

rh-state =-
(lambda (a C)

((lambda (LR FC)
(lambda (time)

(if (LR time) 0
((ambda (W) (min (e pt 2 13) x))
(+ (it (FC time) 1 0)

((now-rh-state LR FC) (- time delta)))))))
(lambda (time) (eql 0 (R time)))
(fall C)))

280 APPENDIX C. RESET HOLD COUNTER BEHAVIOR

Which becomes, with ?n still unbound:

new-rh-state --
(1mbda (R C)

((lambda (LR FC)
(lambda (time)

(it (La time) 0
(let ((NiC (count-ww ?n FC)))

((lambda () (min (oxpt 2 13) x))
(it (< n ((duration LR) time))

(+ (rFC time)
((rh-stat. LR NFC) (- time n)))

(e (NFC time)
(/ ((duration LR) time) n))))))))

(lambda (time) (eql 0 (R time)))
(fall C)))

We can make further use of the assumption that C is periodic by using
the frequency temporal abstraction to describe C, and expressing rh-state
in terms of that abstraction. The transformations required to do the latter
are as follows; first the FC argument is substituted for the original term
(fall C):

rh-state
(lambda (a C)

((lambda (La)
(lambda (time)

(if (LR time) 0
(let ((NFC (count-w ?n (fall C))))

((lambda (x) (min (oxpt 2 13) x))
(if (< a ((duration LR) time))

(+ (NFC time)
((rh-state La EFC) (- time n)))

(* (NFC time)
(((duration LR) time) n))))))))

(lambda (time) (eql 0 (a time)))))

The term (cycles-ww n ' (0 1) C) is then substituted for the equivalent
term (count-ww n (fall C)):

,,,,,,in ioa il an N ililil~ilW~imlai -0

281

rh-stato ==
(lambda (a C)

((lambda (La)
(lambda (tim.)
(it (LR time) 0

(let ((NFC (cycles-wv ?n '(0 1) C)))
((lambda (x) (min (expt 2 13) x))
(it (< n ((duration LR) time))

(+ (NFC time)
((rh-state LR NFC) (- time n)))

(* (NFC time)
(((duration La) time) n))))))))

(lambda (time) (oql 0 (R time)))))

The cycles abstraction can be reformulated in terms of f v as follows:

rh-stato -u
(lambda (a C)

((lambda (La)
(lambda (time)

(it (La time) 0
(lot ((NFC (lambda (time)

(* n ((fwi ?n '(0 1) C) time)))))
((lambda (x) (ain (ept 2 13) x))
(if (< n ((duration La) time))

(+ (IFC time)
((rh-state LR IFC) (- time n)))

(e CNFC time)
(U ((duration LR) time) n))))))))

(lambda (time) (sql 0 (R time)))))

Now INFC can be substituted into the body:

rh-stato ==
(lambda (R C)

((lambda (La)
(lambda (time)

(it (LR time) 0
((lambda x) (ain (Cxpt 2 13) x))
(if (< a ((duration LR) time))

(+ (* n ((fww ?n '(0 1) C) time))
((rh-state LR NFC) (- time n)))

(* (n n ((fv ?n '(0 1) C) time))
(I ((duration LR) time) n)))))))

(lambda (time) (sql 0 (R time)))))

282 APPENDIX C. RESET HOLD COUNTER BEHAVIOR

and the common subexpression promoted, with a simplification in the
else-part of the if:

rh-state
(lambda (R C)

((lambda (LR)
(lambda (time)

(if (LR time) 0
((lambda () (min (.xpt 2 13) x))
(let ((f ((fr- ?n ' (0 1) C) time)))

(if (< n ((duration LR) time))
(+ (* n f)

((rh-state LR IFC) (- time n)))
(* f ((duration LR) time))))))))

(lambda (time) (eql 0 (R time)))))

Since R only takes on the values 0 and 1, La can be removed:

rh-state --
(lambda (R C)

(lambda (tim)
(if (eql 0 (a time)) 0

((ambda W:) (ain (opt 2 13)))
(lot ((f ((fww ?a '(0 1) C) time)))

(if (< n ((duration R) time))
(+ (* n f) ((rh-state awc) (- time n)))
(e f ((duration R) tim))))))))

Finally, the assumption that C is periodic can be used. If C is periodic,
then f must be a constant and ?n is infinite. These substitutions yield:

rh-state ==
(lambda (R C)

(lambda (time)
(if (oql 0 (R time)) 0

((lambda () (min (ezpt 2 13) x))
(if (< infinity ((duration R) time))

(+ (* infinity f)
((rh-state R IKFC) (- time infinity)))

(* i ((duration R) time)))))))

A final transformation removes the if statement since its condition is
always nil, and substitutes for x (the latter could have been done earlier):

283

rh-stat. -

(lambda (R C)
(lambda (time)

(it (eqi 0 CR time)) 0
(min (expt 2 13) (*f ((duration R) time))))))

App endix D

Audio Counter Behavior

Section 5.8.2 alluded to the derivation of the temporally abstract behavior
of the Audio Counter; this derivation is presented here.

While the Reset Hold Counter's Reset input starts the counter back at
0 whenever asserted, in the Audio Counter only the first 1-to-O transition of
the Start signal matters. Eighteen clock cycles must pass before the "start"
state can be reached again: while counting, it is insensitive to the Start
signal. One consequence is that while the transformation from the directly
composed behavior of the Reset Hold Counter to a simplified behavior was
tedious but straightforward, the simplified behavior of the Audio Counter is
not much of an improvement over the composed behavior, and seems to be
derivable only by expanding the behavior to an eighteen-way case split and
then collapsing it.

The four-bit counters are both wired to load "14" when the Load signal
goes low:

k-bit-counter-with- synchronous-clear-state --
(lambda (k D L P T C)

(lambda (time)
(lot ((previous ((self L P T C) (- time 6))))
(if ((rise C) time)

(if (9ql 0 L time)) (D time)
(mod (expt 2 k)

(+ (if (and (eql 1 (P time))
(eql 1 (T time)))

1 O)

previous)))
previous))))

284

285

four-bit-countor-with-synchronou-clear-state -

(lambda (L P T C)
(k-bit-counter-with-synchronous-clear-state

4 (lambda (time) 14) L P T C))

The composition and simplification of the behaviors of those two counters
results in the following similar behavior:

eight-bit-counter-with-synchronous-clear-state -a
(lambda (L P T C)
(k-bit-countor-with-synchronous-clear- state
8 (lambda (time) (- 64 18)) L P T C))

Including the feedback signal Nub results in the following composed defi-
nition:

oightoon-counter
(lambda (S c)

(nthbit 8 (rising-edge-eighteen-counter-state S C)))

rising-edge-eighteen-counter-state a-
(lambda (S C)

(lambda (time)
(lot ((L (lambda (time)

(nthbit
8 ((rising-edge-oightoon-counter-state S C)(- time 6))))))

(eight-bit-counter-with-synchronous-clear-state
(tinvert (tnor S L))
L (lambda (time) 1) C))))

Finally, after many transformations the following simplified definition re-
sults:

rising-odge-eighteen-counter-state =
(lambda (S C)

(lambda (time)
(lot ((previous

((rising-edge-eighteen-counter-state S C)
(- time 6))))

(if ((rise C) time)
(if (eql 0 (S time)) (- 64 18)

(if (eql previous 0) 0
(mod (+ 1 previous) 64)))

previous))))

286 APPENDIX D. AUDIO COUNTER BEHAVIOR

Some temporal abstractions that applied to the Reset Hold Counter can
be applied to this simplified behavior; however, the assumptions on which
they depend are violated by the nornal usage of the circuit and so the result-
ing temporally abstract behaviors have little predictive force. For example,
while the signal Nab is a constant 1, the Audio Counter forms a frequency
divider with respect to the Clock input; however, the clocks come in bursts
of 18 and normally the Start line goes low at least once per burst - the
"frequencies" are thus not constant, but rather are defined over so few cy-
cles as to be useless. For another example, the "counting" behavior of the
Audio Counter can be captured by (* (duration S) (ifw n ' (1 0) C))
only during the bursts of 18 clock cycles and hence is similarly useless.

The behavior as shown above is not event-preserving with respect to S:
any number of events could happen while C had no rising edges, and in that
case Nsb would not change. However, te e Sampling abstraction, when applied
to the Start, Load, and Nsb signals with respect to the temporally abstract
signal (rise Clock), yields the following slightly modified behavior that is
event preserving:

rising-edge-eighteon-counter-state =
(lambda (S C)
((ambda (SS)

(lambda (time)
(let ((previous

((rising-.dge-eighteen-counter-state S C)
(- time 6))))

(if ((rise C) time)
(if (eql 0 (SS time)) (- 64 18)

(if (eql previous 0) 0
(mod (+ 1 previous) 64))

previous)))))
(samp (rise C) S)))

(lambda (SS) ...) is event-preserving, to the extent that n falling edges
on (samp (rise C) S) will result in somewhere between L-1 and n falling
edges on Nab. This is because (*amp (rise C) S) can only change at the
same moments that C rises. Thus the number of falls on Nab (measured with
respect to rising edges of Clock) is bounded as follows:

287

((count-wi lc)Sat) ie
n (fall (sazup (riseCokm.rt) ie
((count-ww

n (fall (samp (rise Clock) Nab))) time) >
(floor

((count-wv
n (fall (samp (rise Clock) Start))) time)

is)

Appendix E

The Switch Level Model

The lowest level of circuit description in BASIL is a switch level model. The
primitive elements of the model are pins, etches, resistors, switches, and
voltage-controlled switches (that is, transistors). The model uses voltages
in the set {01) und currents in the set {-,O,+} with 0 meaning "negli-
gible." This models the steady-state digital behavior of simple analog ele-
ments. The digital current model is needed because circuit boards contain
physical switches, jumpers, and resistors, whose behavior cannot be modeled
adequately by a gate-level digital model.

E.1 Pins and other Connections

Behaviorally, the simplest elements are connections, which have ports at
two ends. Working connections transmit certain signals unchanged from
one port to the other. The signals thus transmitted are called ordinary
signals; voltage is the most primitive such signal, and most abstractions
of it including logic-level are ordinary signals as well. Using a demon
facility instead of rules, each signal that appears at one end of a connection
can result in that signal getting equated (via tsame) to the corresponding
signal at the other and. For example, as long as the connection c is working,
the logic-level signals at either end carry the same value:

288

E.1. PINS AND OTHER CONNECTIONS 289

(com c (out 0 a) (in 0 b)]
[status-of c working]
Signal (11 (out 0 a)) exists
(11 (out 0 a)) is an ordinary signal

[tsam. -oo +oo (11 (out 0 a)) (11 (in 0 b))]

Pins are a kind of connection, and they transmit ordinary signals in this
fashion.

Just as there are logic-level signals denoted (11 X) and representing a
function from time to {0,1}, there are qualitative-current-into signals de-
noted (qci X). Qualitative currents range over f-. 0, +}, and have the arith-
metic operations qplua and qminus with their usual meanings. Pins obey a
qualitative version of Kirchhoff's current law (KCL); that is, the sum of the
currents into the pin must be 0:

If [com (pin ?n ?chip) ?source ?sink]
and [status-of (pin ?n ?chip) working]
and [thru ?1 ?u (qci ?source) ?i]

Then [thru ?l ?u (qci ?sink) (qminus ?i)]

If [conn (pin ?n ?chip) ?source ?sink]
and [status-of (pin ?n ?chip) working]
and [thru ?l ?u (qci ?sink) i]

Then [thru ?1 ?u (qci ?source) (qminus ?i)]

Etches obey similar rules as pins, although they can have any number of
ports denoted (hole I ...), (hole 2 ...), and so forth. The number of
ports on an etch is referred to as its "arity." To transmit ordinary signals,
n rules could be written for each arity, one that says that the value at hole
I is the same as at hole 2, the value at hole 2 is the same as at hole 3,
and so forth. Since some etches have several dozen ports, this is impractical
and inefficient. Instead, BASIL defines for each etch a distinguished port not
corresponding to any physical boundary, which TINT connects to each hole
by a binary connection. For example, suppose etch n119 has arity 3. In
addition to its three ports (hole 1 n119), (hole 2 n119), and (hole 3 n119), it
has a port LL119 to which all three are connected.

290 APPENDIX E. THE SWITCH LEVEL MODEL

Etches also have qualitative KCL rules, and the rules for an etch with 3
holes are shown below; n-ary etches require n rules of this form:

If [is& ?e etch]
and (status-of ?e working]
and [thru ?12 ?u2 (qci (hole 2 ?e)) ?i2]
and [thru ?13 ?u3 (qci (hole S ?*)) ?i3]
and (overlap (?12 ?u2) (?13 ?u3))

Then [thru (max ?12 ?13) (=in ?u2 ?u3)
(qci (hole 1 ?e)) (qminus (qplu ?i2 iS))]

If (isa ?e etch]
and (status-of ? working]
and (thru ?l1 ?ul (qci (hole 1 ?e)) ?il]
and [thru ?13 ?u3 (qci (hole 3 ?e)) ?i3]
and (overlap (?l1 ?u2) (?11 ?u3))

Then [thru (max ?11 ?13) (min ?ul ?u3)
(qci (hole 2 ?e)) (quinus (qplus ?it ?i3))3

If (isa ?o etch]
and (status-of ?e working]
and [thru ?11 ?ul (qci (hole 1 ?o)) ?il]
and [thru ?12 ?u2 (qci (hole 2 ?e)) ?i2]
and (overlap (?1 ?u2) (?l1 ?u2))

Then [thru (max ?i1 ?12) (min ?ul ?u2)
(qci (hole 3 ?e)) (qainus (qplus ?il ?i2))]

E.2 Resistors

Resistors have (i) positive resistance, (ii) two ports (bi 1 ...) and
(bi 2 ...), and (iii) rules enforcing KCL. The mode of a resistor is normal
if the resistor is working. While in normal mode it obeys a qualitative version
of Ohm's law embodied as two rules. First, the current into a resistor has
the same sign as the voltage drop across it:

E.3. SWITCHES 291

If [is& ?r resistor]
and [thru ?1 ?ul (mode ?r) normal]
and [thru ?12 ?u.2 (11 (bi 1 ?r)) ?vl]
and (overlap Ml1 ?ul) (?l2 ?u2))
and [thru ?13 ?u3 (11 (bi 2 ?r)) ?v2]
and (overlap (?l1 ?ul) (12 ?u2) (13 ?u3))

Then [thru (max ?11 ?12 ?13) (min ?ul ?u.2 ?u3)
(qci (bi 1 ?r)) (sign (- ?vl ?v2))3

Second, if there is no current flowing into a resistor then there is no
voltage drop across it; that is, the logic-levels at both ends are the same:

If [isa ?r resistor]
and [thru 1 ?ul (mode ?r) normal]
and [thru ?12 ?u2 (qci (bi ?n ?r)) 0]
and (overlap (?1 ?ul) (?12 ?u2))

Then (tsamo (max ?1 ?12) (min ?ul ?u2)
(11 (hi 1 ?r)) (11 (bi 2 ?r))3

The second rule could be generalized; nonzero current flowing into a re-
sistor implies that there must be a voltage drop across it. In the implemen-
tation, however, every resistor in the Console Controller Board has one end
connected to Vdd, so that the two rules above were sufficient and the more
general version was never needed.

E.3 Switches

Switches appear on circuit boards in various guises; as jumpers, buttons, or
as literal switches whose position the user sets. An ordinary switch has two
ports (bi I ...) and (bi 2 ...), and two modes, open and shut. In
these two modes it either has infinite or negligible resistance, respectively.
There are three rules describing the behavior of switches. First, if a switch
is open then all the currents into it are 0:

If (isa ?s switch]
and Cthru ?l ?u (mode ?s) open]

Then [thru ?l ?u (qci (bi I ?s)) 0]
and [thru ?1 ?u (qci (bi 2 ?9)) 0]

'4l

292 APPENDIX E. THE SWITCH LEVEL MODEL

Second, if a switch is shut then there is no voltage drop across it; the
logic-levels at its ports are the same:

If [isa ?a switch]
and [thru ?I . (sodo ?a) shut]

Then (tasi. ?1 ?u (11 (bi I ft)) (11 (bi 2 UM))]

Third, if a switch is shut it obeys KCL; that is, if the current into one
port is known then the current into the other is its negative:

If (isa ?s switch]
and [thru ?11 ?ul (mode ?) normal]
and [thru ?12 ?u2 (qci (bi ?n ?s)) i]
and (overlap (?1 ?ul) (?12 ?u2))

Then [thru (max ?11 ?12) (min ?ul ?u2)
(qci (bi (- 3 ?n) ?s)) (quinus ?i)

A typical circuit structure encountered on digital boards is a combination
of a switch to ground and a resistor to a constant high voltage (Figure E.1).
When the switch is open, the logic-level of node N goes to 1; when shut it is
0 and current flows out of the resistor through the switch to ground.

Since the resistor and switch typically belong to different field-replaceable
units, it is important in a troubleshooting context for TINT to be able to
model at this level of detail.

This level of detail would also be useful for proper handling of failures
such as solder bridges and other kinds of "shorts." Although handling of
shorts is not implemented, some of the necessary behavior models are in fact
included in TINT and so are presented here for completeness.

Transistors are modeled as voltage-controlled switches. Their rules are
similar to those for switches, except that the logic-level at their g port de-
termines whether they are open or shut:

If [isa ?z transistor]
and [status-of ?x working]
and (thru ?1 ft (11 (in g ?x)) ?v]

Then [thru ?I ?u (mode ?x)
(if (oql ?v 0) 'open 'shut)]

E.3. SWITCHES 293

Figure E.I: Typical Switch-Resistor Combination

LL - 1
(bi 1

R

Resistor

(bi 2 R)

(bi d 8)

S

Switch

(bi a S)

LL" 0-

The resistor and transistor models can be composed to form behavior
models of ordinary digital components such as logic gates. The advantage of
this level of detail is that the effects of faults that cause shorts between signals
(other than power signals) can be correctly modeled. Using the standard
digital model, for example, the logic-level output of a working TTL inverter
must be 1 if the input is 0, and if it is not, then the inverter must be broken.
By taking currents into account, the more accurate prediction can be made
that if the input logic-level is 0, the output current is 0. Hence, if the output
logic-level is 0 instead of 1, it is not a necessary logical consequence that the
inverter is broken; something else could be pulling the output node down.

Using the switch model the behavior of a TTL inverter can be summarized
as follows: if the input current is 0 the output voltage will be 0; if the input
voltage is 0 the output current will be 0. Figure E.2 shows how the qualitative
models of resistors and switches described above can be organized so as to

294 APPENDIX E. THE SWITCH LEVEL MODEL

reproduce this behavior.

Figure E.2: TTL Inverter as Modeled with TINT

LL -I
(bi 1 it)

R

output
I

Resistor I (bi d T)

Input (bi s T) Tansistor

(bi is T)

LL a 0

e If (11 Input) is 0, then the difference between (11 (bi 1 R)) and
(11 (bi 2 R)) is 1, so (qci 2 R) is -. Hence, current is flowing out
of the resistor and back towards the gate driving this one. The switch
is shut and so (11 (hi 1 T)) has the same value as (11 (bi 2 T)),
hence (11 Output) is 0.

* If (qci (bi 2 R)) is 0, then (11 (bi 2 R)) must be pulled up
to 1, the same as (11 (bi 1 R)). This makes the switch open, so
(qci (bi 2 T)) is 0, and the gate being driven will make (11 Output)
be 1.

Similarly, Figure E.3 shows the model of an nMOS inverter in TINT. In
nMOS, the current normally flowing into the device from the input is 0 and
so likewise for the current into the output.

* If (11 Input) is 1 then the switch is shut, so (11 (bi 2 T)) has the
same value as (11 (bi 1 T)), hence (11 Output) is 0.

E.3. SWITCHES 295

Figure E.3: nMOS Inverter as Modeled with TINT

L - 1
(bi 1 R)

R

Resistor'

(bi 2 R) Output

(bi d T)

T

Input (bi g T) Transistor

(bi s T)

LL - 0 -

9 If (11 Input) is 0 then the switch is open, so (qci (bi 2 T)) is 0.
Hence (qci (bi 2 R)) is 0 and hence (11 (bi 2 R)) must be 1.

Similar models apply to NAND and NOR gates in both technologies. A
tristate driver in either technology can be described as a nMOS inverter with
a transistor interposed between the pullup resistor and the output node.

The disadvantage of this level of detail is that while the the digital model
allows the behavior of a given group of boolean gates to be easily predicted
using straightforward local propagation, this cannot be done in general in the
switch model. At every signal fanout in TTL or wired-OR in nMOS, local
propagation stalls, and the solutions to that problem all have unfortunate
side effects. This is a standard problem with local propagation schemes; what
is different about this case is that it is guaranteed to be ubiquitous at the
switch level of detail.

296 APPENDIX E. THE SWITCH LEVEL MODEL

For example, the rules shown so far cannot deduce that the node I in
Figure E.4 must have logic-level 1, nor that the currents into the resistors
must be 0. This is because either one of those facts must be known before
the other can be deduced; this is termed an impasse.

Figure E.4: Impasse Example

LL= I

(bi I R1) (bi 1 R2)1

Ri R2

Resistor Resistor

(bi 2 Ri) (bi 2 R2)

(qci Y) - 0 X (qc Z) -o

One solution is to enumerate the possible values of logic-level at I (there
are only two) in hopes that all but one can be ruled out. In this case, 0
is inconsistent because it would require the sum of currents into I to be
positive. Thus, the logic-level must be 1. This is a terrible solution in
general, because it can lead to combinational explosion among choices made
for different quantities over different time intervals. TINT does not use this
solution.

A second solution is to recognize that Ri and R2 are in parallel, and since
their resistances are positive then the resistance between the high voltage
and X is positive too. In effect, there is just a single resistor between the two
nodes - a slice [Sussman77] [Sussman80]. In BASIL terminology, there is
a functional component including RI, R2, and etch X, and its behavior rule
recognizes the above situation and just assigns the logic-level 1 to X. TINT
uses this solution in the Console Controller Board examples where there
happen to be two or more resistor components pulling up a single circuit
node.

E.3. SWITCHES 297

A third solution is to rely on the intended direction of signal flow between
the components and assume that no fault will cause that to be violated. This
is a way of using the switch model for just those components that really need
it (resistors and switches) while retaining the simpler unidirectional digital
model for everything else. It is the solution that TINT uses everywhere that
the intended signal flow is unidirectional. Shorting faults will be misdiag-
nosed as multiple faults among the shorted components, since the effect of
shorts is to cause current to go places where it was not intended to go. In
TTL it is usually the case that each node is driven by only one component,
and if that component does not hold the node to logic-level 0, some other
component pulls it up to logic-level 1. The component driving the node can
simply be modeled as if it pulls the node to 1 itself. Thus the signal flow
appears to be unidirectional. The behavior of TTL components with respect
to qualitative currents is thus approximated using the following rules. First,
if there is no current into the input of a TTL component then the node is
pulled up to 1:

If ?x is a TTL component
and [thru 1 ?ul (mods ?x) normal]
and [thr ?12 ?u2 (qci (in ?input ?z)) 0]
and ?input is not either PVR or ND
and (overlap (M1I ?ul) (M12 ?u2))

Then [thru (max Ml1 ?12) (min ?ul ?u2)
(11 (in ?input ?x)) 1]

Second, it has been assumed that if a component is not pulling its output
node down, then it will be pulled up to 1; hence if there is no current flowing
through a pin intended to be a TTL output, then the logic-level at the node
is 1:

If ?z is a TTL component
and [conn (pin ?i ?c) (hole ?a ?e) (out ?o ?x)]
and [thru ?I ?u (qci (hole ?m ?e)) 0]

Then [thru ?l ?u (11 (hole ?a ?e)) 1]

'This trigger pattern is implemented using a separate rule for each type of TTL
component.

.. - -- - -- - -. -,.,m-,= m , m mlwmumm m m m R mw, m~m 4

298 APPENDIX E. THE SWITCH LEVEL MODEL

These latter two rules are used for all the TTL components in the imple-
mented model of the Console Controller Board; the board has a two CMOS
chips and for the time being they are modeled as if they were TTL as well.
Where resistors appear in wired-or structures and as pullups for buttons and
switches, the digital current model is used, and since it results in deductions
being made about logic-levels it meshes smoothly with the standard digital
model.

Bibliography

[Abelson85] H. Abelson, G. J. Sussman, and J. Sussman. Structure and In-
terpretation of Computer Programs. MIT Press, Cambridge, MA, 1985.

[AbuHanna88] A. Abu-Hanna and Y. Gold. An Integrated, Deep-Shallow
Expert System for Multi-Level Diagnosis of Dynamic Systems. Techni-
cal Report 504, Technion - Israel Institute of Technology, Haifa 32000,
Israel, March 1988.

[Allen83] J. Allen. Maintaining Knowledge about Temporal Intervals.
Comm. of the ACM, 26(11):832-843, 1983.

[Allen84] J. Allen. Towards a General Theory of Action and Time. Artificial
Intelligence, 23(2):123-154, July 1984.

[Batali8l] J. Batali. An Introduction to DPL. Memo 598, MIT Artificial
Intelligence Lab, 1981.

[Bobrow85] D. Bobrow, editor. Qualitative Reasoning about Physical Sys-
tems. MIT Press, Cambridge, MA, 1985.

(Brown76] A. Brown. Qualitative Knowledge, Causal Reasoning, and the Lo-
calization of Failures. Technical Report 362, MIT Artificial Intelligence
Lab, 1976.

[Brown82] J. S. Brown, R. Burton, and J. de Kleer. Pedagogical, Natural
Language, and Knowledge Engineering Issues in SOPHIE I, II, and III.
In D. Sleeman and J. S. Brown, editors, Intelligent Tutoring Systems,
pages 227-282. Academic Press, New York, 1982.

299

300 BIBLIOGRAPHY

[Cantone83] R. Cantone, F. Pipitone, W. Lander, and M. Marrone. Model-
based Probabilistic Reasoning for Electronics Troubleshooting. In Proc.
8th Int. Joint Conf. on Artificial Intelligence, pages 207-211, Karlsruhe,
West Germany, August 1983.

[Dague87] P. Dague, 0. Raiman, and P. Deves. Troubleshooting: When
Modeling is the Difficulty. In Proc. 6th National Conf. on Artificial
Intelligence, pages 600-605, Seattle, WA, August 1987.

[Davis83] R. Davis and H. Shrobe. Representing the Structure and Behavior
of Digital Hardware. IEEE Computer, pages 75-82, October 1983.

[Davis84] R. Davis. Diagnostic Reasoning Based on Structure and Behavior.
Artificial Intelligence, 24(1):347-410, 1984. Also in Qualitative Reason-
ing about Physical Systems, Bobrow (ed.), MIT Press, Cambridge, MA
1985.

[deKleer76] J. de Kleer. Local Methods for Localizing Faults in Electronic
Circuits. Memo 394, MIT Artificial Intelligence Lab, 1976. Out of print.

[deKleer78] J. de Kleer. Causal and Teleological Reasoning in Circuit Recog-
nition. Technical Report 529, MIT Artificial Intelligence Lab, September
1979.

[deKleer84] J. de Kleer and J. S. Brown. A Qualitative Physics Based on
Confluences. Artificial Intelligence, 24(1):7-84, 1984. Also in Qualitative
Reasoning about Physical Systems, Bobrow (ed.), MIT Press, Cambridge
MA 1985.

[deKleer86a] J. de Kleer. An Assumption-Based TMS. Artificial Intelligence,
28(2):127-162, 1986.

[deKleer86b] J. de Kleer and B. Williams. Back to Backtracking: Controlling
the ATMS. In Proc. 5th National Conf. on Artificial Intelligence, pages
910-917, Philadelphia, PA, August 1986.

[deKleer87] J. de Kleer and B. C. Williams. Diagnosing Multiple Faults.
Artificial Intelligence, 32(1):97-130, April 1987.

BIBLIOGRAPHY 301

[Dean87] T. Dean and D. McDermott. Temporal Data Base Management.
Artificial Intelligence, 32(1):1-56, April 1987.

[Feldman88] Y. A. Feldman and C. Rich. Pattern-Directed Invocation with
Changing Equalities. Memo 1017, MIT Artificial Intelligence Lab, May
1988.

[First82] M. B. First, B. J. Weimer, S. McLinden, and R. A. Miller. LO-
CALIZE: Computer-Assisted Localization of Peripheral Nervous System
Lesions. Computers and Biomedical Research, 15(6):525-543, December
1982.

[Friedman83j L. Friedman. Diagnosis Combining Empirical and Design
Knowledge. Technical Report JPL D-1328, Jet Propulsion Laboratory,
California Institute of Technology, December 1983.

[Geffner86] H. Geffner and J. Pearl. Distributed Diagnosis of Systems with
Multiple Faults. Technical Report CSD-860023, Cognitive Systems Lab-
oratory, UCLA Computer Science Department, Los Angeles, CA 90024,
December 1986.

[Genesereth84] M. Genesereth. The Use of Design Descriptions in Auto-
mated Diagnosis. Artificial Intelligence, 24(1):411-436, 1984. Also in
Qualitative Reasoning about Physical Systems, Bobrow (ed.), MIT Press,
Cambridge MA 1985.

[Ginsberg86] M. Ginsberg. Counterfactuals. Artificial Intelligence, 30(1):35-
80, December 1986.

[Gorry73] G. A. Gorry, J. P. Kassirer, A. Essig, and W. B. Schwartz. Decision
Analysis as the Basis for Computer-Aided Management of Acute Renal
Failure. American Journal of Medicine, 55:473-484, October 1973.

[HaUl87J R. Hall, R. Lathrop, and R. Kirk. A Multiple Representation Ap-
proach to Understanding the Time Behavior of Digital Circuits. In Proc.
6th National Conf. on Artificial Intelligence, pages 799-803, Seattle,
WA, August 1987.

302 BIBLIOGRAPHY

[Hamscher84] W. C. Hamacher and R. Davis. Diagnosing Circuits with State:
An Inherently Underconstrained Problem. In Proc. 4th National Conf.
on Artificial Intelligence, pages 142-147, Austin, TX, August 1984.

[Hamscher87] W. C. Hamacher and R. Davis. Issues in Model-Based Trou-
bleshooting. Memo 893, MIT Artificial Intelligence Lab, March 1987.

[Hanks86] S. Hanks and D. V. McDermott. Default Reasoning, Nonmono-
tonic Logics, and the Frame Problem. In Proc. 5th National Conf. on
Artificial Intelligence, pages 328-333, Philadelphia, PA, August 1986.

[Intel86] Intel. Intel Microcontroller Handbook. Intel Corporation, Santa
Clara, CA, 1986.

[Kahn77] K. Kahn and G. A. Gorry. Mechanizing Temporal Knowledge.
Artificial Intelligence, 9(1):87-108, August 1977.

[Kohane87] I. S. Kohane. Temporal Reasoning in Medical Expert Systems.
Technical Report 389, MIT Lab. for Computer Science, May 1987.

[Kramer87] G. A. Kramer. Incorporating Mathematical Knowledge into De-
sign Models. In J. S. Gero, editor, Ezpert Systems in Computer-Aided
Design, pages 229-265. Elsevier Science Publishers B. V., Amsterdam,
1987.

[Kuipers84] B. J. Kuipers and J. P. Kassirer. Causal Reasoning in Medicine:
Analysis of Protocol. Cognitive Science, 8:363-385, 1984.

[Kulikowski82] C. A. Kulikowski and S. M. Weiss. Representation of Expert
Knowledge for Consultation: The CASNET and EXPERT Projects.
In P. Szolovits, editor, Artificial Intelligence in Medicine, pages 21-56.
Westview Press, Boulder, CO, 1982.

[Ladkin87] P. Ladkin. The Completeness of a Natural System for Reason-
ing with Time Intervals. In Proc. 10th Int. Joint Conf. on Artificial
Intelligence, pages 462-467, Milan, Italy, 1987.

[Lifschitz87] V. Lifschitz. Formal Theories of Action (Preliminary Report).
In Proc. 10th Int. Joint Conf. on Artificial Intelligence, pages 966-972,
Milan, Italy, August 1987.

BIBLIOGRAPHY 303

[Long86] W. J. Long, S. Naimi, M. G. Criscitiello, and R. Jayes. Using a
Physiological Model for Prediction of Therapy Effects in Heart Disease.
In Computers in Cardiology, Cambridge, MA, 1986.

[McAllester80a] D. A. McAllester. The Use of Equality in Deduction and
Knowledge Representation. Technical Report 550, MIT Artificial Intel-
ligence Lab, January 1980.

[McAllester8Ob] D. A. McAllester. An Outlook on Truth Maintenance.
Memo 551, MIT Artificial Intelligence Lab, August 1980.

[McCarthy69] J. M. McCarthy and P. J. Hayes. Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence. In D. Michie and
B. Meltzer, editors, Machine Intelligence 4, pages 463-502. Edinburgh
University Press, Scotland, 1969. Also in Readings in Artificial Intelli-
gence, B. L. Webber and N. J. Nilsson (eds.), Tioga Press, 1981.

[McDermott82] D. V. McDermott. A Temporal Logic for Reasoning about
Processes and Plans. Cognitive Science, 6(2):101-155, April 1982.

[Milne85] R. Milne. Fault Diagnosis through Responsibility. In Proc. 9th
Int. Joint Conf. on Artificial Intelligence, pages 423-425, Los Angeles,
CA, August 1985.

[Minsky?5] M. Minsky. A Framework for Representing Knowledge. In P. H.
Winston, editor, The Psychology of Computer Vision, pages 211-277.
McGraw-Hill, New York, NY, 1975.

[Moszkowski82] B. Moszkowski. A Temporal Logic for Multi-Level Reasoning
about Hardware. Technical Report STAN-CS-82-952, Stanford Univer-
sity Artificial Intelligence Lab., 1982.

[Pan84] J. Pan. Qualitative reasoning with Deep-level Mechanism Models
for Diagnoses of Mechanism Failures. In Proc. Ist Conf. on A.L Appli-
cations, pages 295-301, Denver, CO, 1984.

[Patil8l] R. S. Patil. Causal Representation of Patient Illness for Electrolyte
and Acid-Base Diagnosis. Technical Report 267, MIT Lab. for Computer
Science, October 1981.

304 BIBLIOGRAPHY

[Pauker76] S. G. Pauker, G. A. Gorry, J. P. Kassirer, and W. B. Schwartz.
Towards the Simulation of Clinical Cognition: Taking a Present Illness
by Computer. American Journal of Medicine, 60:981-996, June 1976.

[Pople82] H. E. Pople. Heuristic Methods for Imposing Structure on M-
structured Problems: The Structuring of Medical Diagnostics. In
P. Szolovits, editor, Artificial Intelligence in Medicine, pages 119-190.
Westview Press, Boulder, CO, 1982.

[Reggia83] J. A. Reggia, D. S. Nau, and P. Wang. Diagnostic Expert Systems
Based on a Set Covering Model. Int. Journal of Man-Machine Studies,
19(5):437-460, November 1983.

(Reiter87] R. Reiter. A Theory of Diagnosis from First Principles. Artificial
Intelligence, 32(1):57-96, April 1987.

[Roth67J J. P. Roth, W. G. Bouricius, and P. R. Schneider. Programmed
Algorithms to Compute Tests to Detect and Distinguish between Fail-
ures in Logic Circuits. IEEE Transactions on Electronic Computers,
EC-16(1):567-580, 1967.

[Rowley87] S. Rowley, H. Shrobe, R. Cassels, and W. C. Hamscher. Joshua:
Uniform Access to Heterogeneous Knowledge Structures, or, Why Josh-
ing is Better than Conniving or Planning. In Proc. 6th National Conf.
on Artificial Intelligence, pages 45-52, Seattle, WA, 1987.

[Russ86] T. A. Russ. A System for Using Time Dependent Data in Patient
Management. In MEDINFO 86: Proceedings of the 5th Conference on
Medical Informatics, pages 165-169, Washington, DC, October 1986.

[Scarl85] E. Scarl, J. R. Jamieson, and C. I. Delaune. A Fault Detection
and Isolation Method Applied to Liquid Oxygen Loading for the Space
Shuttle. In Proc. 9th Int. Joint Conf. on Artificial Intelligence, pages
414-416, Los Angeles, CA, 1985.

[Shirley83] M. H. Shirley and R. Davis. Generating Distinguishing Tests
based on Hierarchical Models and Symptom Information. In Proc. Intl'
Conference on Computer Design, 1983.

.7

BIBLIOGRAPHY 305

[Shoham86] Y. Shoham. Chronological Ignorance: Time, Nonmonotonicity,
Necessity, and Causal Theories. In Proc. 5th National Conf. on Artificial
Intelligence, pages 389-393, Philadelphia, PA, August 1986.

[Shoham87] Y. Shoham. Temporal Logics in AL Semantical and Ontological
Considerations. Artificial Intelligence, 33(1):89-104, September 1987.

[Shortliffe76] E. H. Shortliffe. MYCIN: Computer-Based Consultations in
Medical Therapeutics. American Elsevier, New York, 1976.

[Simmons83] R. G. Simmons. Representing and Reasoning about Change in
Geologic Interpretation. Technical Report 749, MIT Artificial Intelli-
gence Lab, December 1983.

[Steele84] G. L. Steele. Common LISP: The Language. Digital Equipment
-, Corporation, 1984.

tSussman77] G. J. Sussman. SLICES: At the Boundary between Analysis
and Synthesis. Memo 433, MIT Artificial Intelligence Lab, 1977. This
memo is out of print.

[Sussman80] G. J. Sussman and G. L. Steele. Constraints: A Language
for Expressing Almost-hierarchical Descriptions. Artificial Intelligence,
14(1):1-40, January 1980.

[Szolovits78] P. Szolovits and S. G. Pauker. Categorical and Probabilis-
tic Reasoning in Medical Diagnosis. Artificial Intelligence, 11:115-144,
1978.

[Valdes86] R. Valdes-Perez. Spatio-Temporal Reasoning and Linear Inequal-
ities. Memo 875, MIT Artificial Intelligence Lab, May 1986.

[Valdes871 R. Vades-Perez. The Satisfiability of Temporal Constraint Net-
works. In Proc. 6th National Conf. on Artificial Intelligence, pages 256-
260, Seattle, WA, August 1987.

[VanBaalen881 J. Van Baalen and R. Davis. Overview of an Approach to
Representation Design. In Proc. 7th National Conf. on Artificial Intel-
ligence, pages 392-397, Minneapolis, MN, August 1988.

306 BIBLIOGRAPHY

[Vilain86] M. Vilain and H. Kauts. Constraint Propagation Algorithms for
Temporal Reasoning. In Piw. 5th National Conf. on Artificial Intelli-
gence, pages 377-382, Philadelphia, PA, August 1986.

[Weise86] D. Weise. Formal Multilevel Hierarchical Verification of Syn-
chronous MOS VLSI Circuits. Technical Report 978, MIT Artificial
Intelligence Lab, August 1986.

[Weld86] D. S. Weld. The Use of Aggregation in Qualitative Simulation.
Artificial Intelligence, 30(1):1-34, October 1986.

[Williams86] B. C. Williams. Doing Time: Putting Qualitative Reasoning on
Firmer Ground. In Proc. 5th National Conf. on Artificial Intelligence,
pages 105-112, Philadelphia, PA, August 1986.

